In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study...In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.展开更多
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate eq...A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by a...This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by adopting two formal integration methods.The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method.These results are more general compared to Hadi et al(2018 Optik 172545–53)and Yakada et al(2019 Optik197163108).展开更多
文摘In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.
文摘A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
文摘This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by adopting two formal integration methods.The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method.These results are more general compared to Hadi et al(2018 Optik 172545–53)and Yakada et al(2019 Optik197163108).