期刊文献+
共找到1,777篇文章
< 1 2 89 >
每页显示 20 50 100
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network 被引量:19
1
作者 ZHANG Jun-hong XIE An-guo SHEN Feng-man 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期1-5,共5页
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time... A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager. 展开更多
关键词 BP neural network MULTI-objectIVE OPTIMIZATION SINTER
在线阅读 下载PDF
Overview of Object Detection Algorithms Using Convolutional Neural Networks 被引量:14
2
作者 Junsong Ren Yi Wang 《Journal of Computer and Communications》 2022年第1期115-132,共18页
In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many... In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many vision tasks. Whether we need to realize the interaction between images and text or recognize fine categories, it provides reliable information. This article reviews the development of object detection networks. Starting from RCNN, we introduce object detection based on candidate regions, including Fast R-CNN, Faster R-CNN, etc.;and then start to introduce single-shot networks including YOLO, SSD, and Retina Net, etc. Detectors are the most excellent methods at present. By reviewing the current research status of object detection networks, it provides suggestions for the further development trend and research of object detection. 展开更多
关键词 Deep Learning Convolutional neural network object Detection Computer Vision
在线阅读 下载PDF
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
3
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
3D Object Recognition by Classification Using Neural Networks 被引量:1
4
作者 Mostafa Elhachloufi Ahmed El Oirrak +1 位作者 Aboutajdine Driss M. Najib Kaddioui Mohamed 《Journal of Software Engineering and Applications》 2011年第5期306-310,共5页
In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads... In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads to recognition of the former. 3D objects of this database are transformations of other objects by one element of the overall transformation. The set of transformations considered in this work is the general affine group. 展开更多
关键词 RECOGNITION CLASSIFICATION 3D object neural network AFFINE TRANSFORMATION
在线阅读 下载PDF
Initial Object Segmentation for Video Object Plane Generation Using Cellular Neural Networks
5
作者 王慧 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2003年第2期168-172,共5页
MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial obj... MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach. 展开更多
关键词 video object plane(VOP) cellular neural networks(CNN) templates.
在线阅读 下载PDF
Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks 被引量:2
6
作者 Jie Zhang 《International Journal of Automation and computing》 EI 2006年第1期1-7,共7页
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre... In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor. 展开更多
关键词 Optimal control batch processes neural networks multi-objective optimisation.
在线阅读 下载PDF
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
7
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural network (CNN) FEATURE PYRAMID network (FPN) object detection deconvolution.
在线阅读 下载PDF
Video Based Fire Detection Systems on Forest and Wildland Using Convolutional Neural Network 被引量:2
8
作者 HICINTUKA Jean Philippe ZHOU Wuneng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期149-157,共9页
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar... The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods. 展开更多
关键词 FIRE detection wildland fires convolutional neural network(CNN) VIDEO SEQUENCES VIDEO ANALYSIS object ANALYSIS
在线阅读 下载PDF
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
9
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
在线阅读 下载PDF
An Ensemble of Convolutional Neural Networks Using Wavelets for Image Classification 被引量:4
10
作者 Travis Williams Robert Li 《Journal of Software Engineering and Applications》 2018年第2期69-88,共20页
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ... Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy. 展开更多
关键词 CNN SDA neural network Deep LEARNING WAVELET Classification Fusion Machine LEARNING object Recognition
在线阅读 下载PDF
An integrated scheme of neural network and optimal predictive control
11
作者 WenLi GuohuanLou +1 位作者 XuyanTu LiPeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第4期302-304,共3页
An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good contro... An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good control performance. The output of nonlinear network model is adopted as a measured disturbance that is therefore weakened in predictive feed-forward control. Simulation and practical application show the effectiveness of control by the proposed approach. 展开更多
关键词 neural network (NN) optimal predictive control nonlinear objective
在线阅读 下载PDF
基于DNN-NSGA-Ⅱ的高填方加筋边坡参数优化研究
12
作者 查文华 谭雪剑 +3 位作者 许涛 徐源歆 赖斯祾 纪超 《水力发电》 2026年第1期45-51,共7页
以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为... 以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为输入、稳定性响应指标为输出的DNN代理模型;随后,将该代理模型嵌入NSGA-Ⅱ框架,实现以最小化水平位移、加筋材料用量与最大化安全系数为目标的多目标寻优。通过对Pareto前沿解集的分析与典型方案提取,验证所提方法在兼顾边坡安全性与经济性方面的有效性,可为高填方边坡优化设计提供理论支撑与工程参考。 展开更多
关键词 高填方边坡 加筋设计 多目标优化 深度神经网络 非支配排序遗传算法
在线阅读 下载PDF
Multi-Objective Optimization for Tandem Cold Rolling Schedule 被引量:7
13
作者 YANG Jing-ming ZHANG Qing CHE Hai-jun HAN Xin-yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第11期34-39,共6页
Considering the multivariable, strong-coupled, and nonlinear features of tandem cold rolling mill, a mathematical model of multi-objective optimization was built to facilitate the design of new systems aiming at equat... Considering the multivariable, strong-coupled, and nonlinear features of tandem cold rolling mill, a mathematical model of multi-objective optimization was built to facilitate the design of new systems aiming at equating the relative load, preventing slip, and obtaining best shape. BP (back propagation) neural network based on Levenberg- Marquardt algorithm was used for predicting the rolling force. The multi-objective fuzzy theory and method were introduced during the optimization. With an example of 1 370 mm tandem cold rolling mill, the rolling schedule of the common rolling, the single-objective optimization design, and the multi-objective fuzzy optimization design were compared with each other. The results generated from the case study showed that the proposed approach could significantly decreased the values of three objective functions simultaneously and the performance of the optimal rolling schedule was satisfactory and promising. Moreover, the capability and usefulness of fuzzy application in tandem cold rolling schedule were clearly demonstrated. 展开更多
关键词 rolling schedule tandem cold rolling neural network multi-objective fuzzy optimization
原文传递
热电联产系统的多目标优化控制策略及DCS实现
14
作者 王昭 《科学技术创新》 2026年第2期5-8,共4页
热电联产系统运行过程中面临效率及成本与环境排放等多重约束条件的动态变化,需要采用先进的优化控制策略实现关键性能指标的协同优化,研究提出一种基于深度神经网络的动态多目标优化控制策略,构建深度神经网络模型描述系统热效率与发... 热电联产系统运行过程中面临效率及成本与环境排放等多重约束条件的动态变化,需要采用先进的优化控制策略实现关键性能指标的协同优化,研究提出一种基于深度神经网络的动态多目标优化控制策略,构建深度神经网络模型描述系统热效率与发电效率及污染物排放的非线性关系,然后采用改进的多目标粒子群优化算法求解燃料供给量与汽轮机负荷分配等关键操作参数的最优设定值,最终基于DCS平台实现优化控制策略的工程化部署与实时调度。实验结果表明该策略在保证系统安全稳定运行的前提下热效率提升且运行成本降低,NO_(x)排放减少并显著提升了热电联产系统的综合性能与环境友好性。 展开更多
关键词 热电联产 多目标优化 DCS系统 深度神经网络 动态控制
在线阅读 下载PDF
Optimal Bandwidth Scheduling for Resource-constrained Networks 被引量:4
15
作者 LI Zu-Xin WANG Wan-Liang CHENG Xin-Min 《自动化学报》 EI CSCD 北大核心 2009年第4期443-448,共6页
关键词 网络控制系统 优化带宽调度 资源约束网络 服务质量
在线阅读 下载PDF
Performance of Object Classification Using Zernike Moment
16
作者 Ariffuddin Joret Mohammad Faiz Liew Abdullah +2 位作者 Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin 《Journal of Electronic Science and Technology》 CAS 2014年第1期90-94,共5页
Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is... Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems. 展开更多
关键词 Features extraction neural network object classification Zernike moment.
在线阅读 下载PDF
Vision Recognition of Three Dimensional Object Using Aspect Graph
17
作者 栾新 朱铁一 陶奇志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第2期55-62,共8页
This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transiti... This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transitions. Log polar mapping (LPM) and discrete Fourier transformation (DFM) are used to obtain position, scale and rotation invariant feature vectors of 2D characteristic views. ART 2 model is used as memory and classifier of the feature information of the object. ART 2 neural network is improved in experiment with satisfactory results. 展开更多
关键词 neural network object RECOGNITION FEATURE ASPECT
在线阅读 下载PDF
Optimizing Deep Learning Parameters Using Genetic Algorithm for Object Recognition and Robot Grasping 被引量:2
18
作者 Delowar Hossain Genci Capi Mitsuru Jindai 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期11-15,共5页
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We... The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks. 展开更多
关键词 Deep learning(DL) deep belief neural network(DBNN) genetic algorithm(GA) object recognition robot grasping
在线阅读 下载PDF
Multi-Objective Optimization Design through Machine Learning for Drop-on-Demand Bioprinting 被引量:7
19
作者 Jia Shi Jinchun Song +1 位作者 Bin Song Wen F. Lu 《Engineering》 SCIE EI 2019年第3期586-593,共8页
Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generati... Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generation, too-large droplet generation, and too-low droplet speed. These challenges reduce the stability and precision of DOD printing, disorder cell arrays, and hence generate further structural errors. In this paper, a multi-objective optimization (MOO) design method for DOD printing parameters through fully connected neural networks (FCNNs) is proposed in order to solve these challenges. The MOO problem comprises two objective functions: to develop the satellite formation model with FCNNs;and to decrease droplet diameter and increase droplet speed. A hybrid multi-subgradient descent bundle method with an adaptive learning rate algorithm (HMSGDBA), which combines the multisubgradient descent bundle (MSGDB) method with Adam algorithm, is introduced in order to search for the Pareto-optimal set for the MOO problem. The superiority of HMSGDBA is demonstrated through comparative studies with the MSGDB method. The experimental results show that a single droplet can be printed stably and the droplet speed can be increased from 0.88 to 2.08 m·s^-1 after optimization with the proposed method. The proposed method can improve both printing precision and stability, and is useful in realizing precise cell arrays and complex biological functions. Furthermore, it can be used to obtain guidelines for the setup of cell-printing experimental platforms. 展开更多
关键词 Drop-on-demand printing INKJET Gradient DESCENT multi-objective optimization Fully connected neural networks
在线阅读 下载PDF
Hydraulic Optimization of a Double-channel Pump's Impeller Based on Multi-objective Genetic Algorithm 被引量:12
20
作者 ZHAO Binjuan WANG Yu +2 位作者 CHEN Huilong QIU Jing HOU Duohua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期634-640,共7页
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro... Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers. 展开更多
关键词 double-channel pump's impeller multi-objective genetic algorithm artificial neural network computational fluid dynamics(CFD) UNI
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部