期刊文献+
共找到1,758篇文章
< 1 2 88 >
每页显示 20 50 100
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network 被引量:19
1
作者 ZHANG Jun-hong XIE An-guo SHEN Feng-man 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期1-5,共5页
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time... A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager. 展开更多
关键词 BP neural network MULTI-objectIVE OPTIMIZATION SINTER
在线阅读 下载PDF
Overview of Object Detection Algorithms Using Convolutional Neural Networks 被引量:13
2
作者 Junsong Ren Yi Wang 《Journal of Computer and Communications》 2022年第1期115-132,共18页
In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many... In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many vision tasks. Whether we need to realize the interaction between images and text or recognize fine categories, it provides reliable information. This article reviews the development of object detection networks. Starting from RCNN, we introduce object detection based on candidate regions, including Fast R-CNN, Faster R-CNN, etc.;and then start to introduce single-shot networks including YOLO, SSD, and Retina Net, etc. Detectors are the most excellent methods at present. By reviewing the current research status of object detection networks, it provides suggestions for the further development trend and research of object detection. 展开更多
关键词 Deep Learning Convolutional neural network object Detection Computer Vision
在线阅读 下载PDF
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
3
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
3D Object Recognition by Classification Using Neural Networks 被引量:1
4
作者 Mostafa Elhachloufi Ahmed El Oirrak +1 位作者 Aboutajdine Driss M. Najib Kaddioui Mohamed 《Journal of Software Engineering and Applications》 2011年第5期306-310,共5页
In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads... In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads to recognition of the former. 3D objects of this database are transformations of other objects by one element of the overall transformation. The set of transformations considered in this work is the general affine group. 展开更多
关键词 RECOGNITION CLASSIFICATION 3D object neural network AFFINE TRANSFORMATION
在线阅读 下载PDF
Initial Object Segmentation for Video Object Plane Generation Using Cellular Neural Networks
5
作者 王慧 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2003年第2期168-172,共5页
MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial obj... MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach. 展开更多
关键词 video object plane(VOP) cellular neural networks(CNN) templates.
在线阅读 下载PDF
Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks 被引量:2
6
作者 Jie Zhang 《International Journal of Automation and computing》 EI 2006年第1期1-7,共7页
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre... In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor. 展开更多
关键词 Optimal control batch processes neural networks multi-objective optimisation.
在线阅读 下载PDF
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
7
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural network (CNN) FEATURE PYRAMID network (FPN) object detection deconvolution.
在线阅读 下载PDF
Video Based Fire Detection Systems on Forest and Wildland Using Convolutional Neural Network 被引量:2
8
作者 HICINTUKA Jean Philippe ZHOU Wuneng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期149-157,共9页
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar... The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods. 展开更多
关键词 FIRE detection wildland fires convolutional neural network(CNN) VIDEO SEQUENCES VIDEO ANALYSIS object ANALYSIS
在线阅读 下载PDF
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
9
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
在线阅读 下载PDF
An Ensemble of Convolutional Neural Networks Using Wavelets for Image Classification 被引量:4
10
作者 Travis Williams Robert Li 《Journal of Software Engineering and Applications》 2018年第2期69-88,共20页
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ... Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy. 展开更多
关键词 CNN SDA neural network Deep LEARNING WAVELET Classification Fusion Machine LEARNING object Recognition
在线阅读 下载PDF
An integrated scheme of neural network and optimal predictive control
11
作者 WenLi GuohuanLou +1 位作者 XuyanTu LiPeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第4期302-304,共3页
An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good contro... An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good control performance. The output of nonlinear network model is adopted as a measured disturbance that is therefore weakened in predictive feed-forward control. Simulation and practical application show the effectiveness of control by the proposed approach. 展开更多
关键词 neural network (NN) optimal predictive control nonlinear objective
在线阅读 下载PDF
基于改进YOLOv9m的多品种玉米雄穗检测方法
12
作者 陈鹏 王兴蓉 +2 位作者 章军 王兵 梁栋 《农业工程学报》 北大核心 2025年第17期122-131,共10页
精准检测玉米雄穗对保障玉米生产具有重要的理论意义与应用价值。针对当前玉米雄穗检测中存在的不同品种雄穗形态差异明显、田间复杂背景干扰及目标遮挡严重等核心问题,该研究基于YOLOv9m提出多尺度轴向感知与特征增强网络(multi-scale ... 精准检测玉米雄穗对保障玉米生产具有重要的理论意义与应用价值。针对当前玉米雄穗检测中存在的不同品种雄穗形态差异明显、田间复杂背景干扰及目标遮挡严重等核心问题,该研究基于YOLOv9m提出多尺度轴向感知与特征增强网络(multi-scale axial aware and feature enhancement network,MAAFENet),用于多品种玉米雄穗的检测。该网络利用交互式跨层融合特征增强模块增强玉米雄穗的关键特征信息,减轻土壤、叶片等背景噪声干扰,并缓解遮挡场景下的特征丢失问题;利用多尺度轴向感知模块结合全局上下文信息和局部细节信息,提升对多品种雄穗的特征提取能力。结果表明,MAAFENet在多品种玉米雄穗检测(multiple varieties maize tassel detection,MVMTD)数据集上的精确率、召回率和平均精度均值分别为92.9%、92.5%和93.9%,比YOLOv9m模型分别提高了1.1、0.9和0.2个百分点。此外,MAAFENet在公开的玉米雄穗检测与计数(maize tassel detection and counting,MTDC)数据集上的精确率、召回率和平均精度均值分别为91.9%、85.9%和92.1%,与YOLOv9m、YOLOv10m等主流模型相比均达到最优。检测可视化的结果表明MAAFENet对于形态各异的玉米雄穗具有良好的检测效果。综上,该研究提出的方法能够有效检测出品种多样的玉米雄穗,为后续玉米产量估算提供基础的技术支持。 展开更多
关键词 卷积神经网络 目标检测 图像分析 无人机 玉米雄穗
在线阅读 下载PDF
ObjectBoxG:基于GC3模块的目标检测算法
13
作者 张建宇 谢娟英 《智能系统学报》 CSCD 北大核心 2024年第6期1385-1394,共10页
随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提... 随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提出基于图谱方法的图卷积层模块GConv(graph convolution layer),学习图像全局特征;融合模块GConv与C3(cross stage partial network with 3 convolutions)得到GC3(graph C3 module)模块,进一步提取图像原始特征、细节特征以及全局特征;将GC3结合广义特征金字塔网络GFPN(generalized feature pyramid network),提出图广义特征金字塔网络GGFPN(graph generalized feature pyramid network),并嵌入ObjectBox算法,设计出ObjectBoxG算法。经典数据集的实验测试表明,提出的GC3模块比原C3模块具有更强特征提取能力;提出的GGFPN网络比GC3的特征学习能力更强;提出的ObjectBoxG算法具有优良的目标检测性能。 展开更多
关键词 图卷积神经网络 特征提取 特征融合 目标检测 深度学习 无锚框方法 特征金字塔网络 object-Box检测器 多尺度特征 全局特征
在线阅读 下载PDF
电磁混合式耦合器调隙装置多目标参数优化
14
作者 王爽 孙守锁 +1 位作者 郭永存 胡泽永 《浙江大学学报(工学版)》 北大核心 2025年第5期1007-1017,共11页
针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析... 针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析对设计参数进行分级优化,提出蜣螂优化算法优化BP神经网络模型(DBOBP)和多目标金豺优化算法(MOGJO),结合响应面法和扫描法,确定电磁调隙装置的最优参数.基于有限元法对推力波形、感应电动势、磁感应强度及磁场线分布进行分析,优化后径向气隙磁感应强度提升了19%,平均推力提升了57.8%,推力波动比值降低了28.3%,验证了最终设计相对于最初设计的优异性能以及新型磁力耦合器多目标参数分级优化的正确性. 展开更多
关键词 磁力耦合器 电磁调隙 DBO-BP神经网络 多目标金豺优化(MOGJO)算法 多目标参数优化
在线阅读 下载PDF
基于YOLOv8网络建立结直肠息肉实时检测的人工智能辅助系统(含视频)
15
作者 陈健 孙斌 +4 位作者 王甘红 夏开建 汤洪 徐晓丹 周静洁 《胃肠病学和肝病学杂志》 2025年第4期538-545,共8页
目的利用2023年新推出的YOLOv8m网络,开发一款人工智能辅助系统,旨在实现腺瘤性息肉的自动定位和诊断。方法使用4个结肠息肉数据集,总计包括9411张静态图像和25段视频。所涵盖的息肉类别包括增生性息肉和腺瘤性息肉。利用LabelMe工具对... 目的利用2023年新推出的YOLOv8m网络,开发一款人工智能辅助系统,旨在实现腺瘤性息肉的自动定位和诊断。方法使用4个结肠息肉数据集,总计包括9411张静态图像和25段视频。所涵盖的息肉类别包括增生性息肉和腺瘤性息肉。利用LabelMe工具对图像进行标注,并将标注数据转换成适用于深度学习模型训练的YOLO格式。在模型训练方面,采用预训练的YOLOv5m和YOLOv8m模型,并结合实时数据增强以及多种图像处理技术进行迁移学习训练。模型性能的评估采用多个指标,包括敏感性、特异性、假阳性率和检测速度(每秒帧数,frames per second,FPS)、平均精度(mean average precision,mAP)等。此外,还使用混淆矩阵进行详细评估,并将模型的性能与不同资历的医师进行比较分析。结果在对1411个息肉的验证集进行评估中,YOLOv8m模型在多项性能指标上超越了YOLOv5。YOLOv8m的整体准确率为98.58%,在腺瘤性息肉、增生性息肉检测的敏感性分别为98.06%和99.32%,特异性分别为99.33%和98.09%,不同类型息肉预测的mAP50为0.994。在与内镜医师的性能比较中,YOLOv8m模型在准确率(98.58%)和处理速度(60.61帧/s)方面均优于低年资(准确率为86.02%)和高年资内镜医师(准确率为93.14%),其处理速度是低年资内镜医师的67.2倍。结论基于YOLOv8m网络的深度学习模型能够快速、精确地检测与分类结直肠息肉,在辅助内镜医师提高腺瘤性息肉检出率方面展现出很大的应用潜力。 展开更多
关键词 结直肠息肉 深度学习 深度卷积神经网络 目标检测 YOLO
在线阅读 下载PDF
基于神经网络代理模型的门式墩优化方法及软件研发 被引量:1
16
作者 柏华军 《铁道标准设计》 北大核心 2025年第3期106-112,共7页
针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化... 针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化数学模型;然后,基于有限元法构建门式墩训练样本集,采用拉丁超立方开展试验设计,建立BPNN神经网络代理模型;最后,采用NSGAII遗传优化算法对BPNN神经网络代理模型进行搜索,实现门式墩最优结构尺寸和钢束线形的搜索推荐。依托某门式墩结构设计,开展算法有效性和效率验证,结果表明,案例的优化时间由有限元法的45 h缩短至智能优化算法的15 min,优化算法在保证预测精度的同时提高优化效率180倍。 展开更多
关键词 铁路桥梁 门式墩 结构优化 BP神经网络 代理模型 多目标优化 NSGAII算法 拉丁超立方设计
在线阅读 下载PDF
自学习知识图谱驱动的水电调度智能化研究
17
作者 黄帆 涂圣勤 +2 位作者 董峰 李宁 胡杨 《国外电子测量技术》 2025年第4期95-102,共8页
水电调度面临复杂水文条件与动态市场需求的挑战,传统方法难以实现多目标协同优化。提出一种基于自学习知识图谱的智能调度框架,融合图神经网络与强化学习,构建动态感知与自主优化的决策体系。通过知识图谱表征水电系统的拓扑关联与约... 水电调度面临复杂水文条件与动态市场需求的挑战,传统方法难以实现多目标协同优化。提出一种基于自学习知识图谱的智能调度框架,融合图神经网络与强化学习,构建动态感知与自主优化的决策体系。通过知识图谱表征水电系统的拓扑关联与约束规则,结合近端策略优化生成实时调度指令,并利用NSGA-Ⅲ算法实现发电经济性、防洪安全性与设备损耗的多目标权衡。实验模拟某流域梯级水库场景,结果表明:相较于动态规划与规则基准方法,所提方法总发电收益提升10.3%(达750万元),防洪违规次数降为0,设备损耗指数降低41.9%。研究结果表明:自学习知识图谱通过动态编码与闭环反馈机制,显著提升了调度系统的智能化水平与鲁棒性,为应对气候变化与设备老化提供了创新解决方案。未来将探索跨能源协同优化与分布式计算,以增强大规模系统的适应性。 展开更多
关键词 水电调度 知识图谱 强化学习 图神经网络 多目标优化
原文传递
基于ATD-CNN模型的黄河郑州段水面漂浮物检测研究
18
作者 邵晓艳 王军 +2 位作者 赵雪专 王胜 冯军 《人民黄河》 北大核心 2025年第2期131-136,共6页
针对水面漂浮物感知目标小、易受干扰、识别精度低的问题,提出ATD-CNN目标检测模型。结合注意力机制,将注意力模块嵌入Faster R-CNN改进模型的基本主干网络,计算特征图内部特征点之间的长距离相关系数,对显著性特征进行有效增强,以提升... 针对水面漂浮物感知目标小、易受干扰、识别精度低的问题,提出ATD-CNN目标检测模型。结合注意力机制,将注意力模块嵌入Faster R-CNN改进模型的基本主干网络,计算特征图内部特征点之间的长距离相关系数,对显著性特征进行有效增强,以提升基本主干网络对图像特征的提取能力。基于河南省郑州市惠济区南裹头黄河沿岸采集的图像数据,对ATD-CNN模型检测效果进行验证,并将该模型性能与Faster R-CNN改进模型、YOLOv5单阶段目标检测模型进行对比。结果表明:与Faster R-CNN改进模型相比,ATD-CNN模型对水面漂浮物的漏检率下降,其mAP值提升了6.80%,F1 Score平均值提升了2%。与YOLOv5X、Faster R-CNN改进模型相比,ATD-CNN模型的mAP值分别提升了2.91%、6.80%,有效提高了水面漂浮物检测精度。 展开更多
关键词 卷积神经网络 水面漂浮物 目标检测 注意力 黄河郑州段
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测 被引量:3
19
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于SA-BP神经网络的直线电机优化设计 被引量:1
20
作者 郭凯 李昊 +1 位作者 李彪 梁楠楠 《太原学院学报(自然科学版)》 2025年第2期45-52,共8页
针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参... 针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参数建立BP神经网络训练样本库,设计BP神经网络算法的训练周期、衰减率等参数后进行模型训练,拟合预测出电机尺寸参数与定位力之间的关系模型,最后利用多目标优化算法优化电机的尺寸参数。实验结果表明:基于SA-BP神经网络的电机模型的推力计算结果与有限元仿真结果的误差为2.35%,SA-BP神经网络算法不仅具有较高的计算精度,还能有效提升电机仿真计算速度。 展开更多
关键词 永磁直线同步电机 解析算法 BP神经网络算法 定位力 多目标优化算法
在线阅读 下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部