期刊文献+
共找到721篇文章
< 1 2 37 >
每页显示 20 50 100
Neural Codes Constructs Based on Combinatorial Design
1
作者 Jin Huang 《Applied Mathematics》 2025年第1期42-60,共19页
Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into... Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory. 展开更多
关键词 Combinatorial neural codes Orthogonal Latin Rectangle Steiner System Group Divisible Design Transversal Design
在线阅读 下载PDF
Towards precise synthetic neural codes:high-dimensional stimulation with flexible electrodes
2
作者 Robin Kim Yuxuan Liu +2 位作者 Jiaao Zhang Chong Xie Lan Luan 《npj Flexible Electronics》 2025年第1期1104-1114,共11页
Neural representations arise from high-dimensional population activity,but current neuromodulation methods lack the precision to write information into the central nervous system at this complexity.In this perspective... Neural representations arise from high-dimensional population activity,but current neuromodulation methods lack the precision to write information into the central nervous system at this complexity.In this perspective,we propose high-dimensional stimulation as an approach to better approximate natural neural codes for brain-machine interfaces.Key advancements in resolution,coverage,and safety are essential,with flexible microelectrode arrays offering a promising path toward precise synthetic neural codes. 展开更多
关键词 precise synthetic neural codes neuromodulation methods neural representations flexible electrodes flexible microelectrode arrays approximate natural neural codes high dimensional stimulation central nervous system
原文传递
A New Class of Nonlinear Error Control Codes Based on Neural Networks 被引量:1
3
作者 Jin Fan Fan Junbo Deng Xingming(School of Computer and Communicalion Engineering,Southwest Jiaolong University),Chengdu 610031, Chiua 《Journal of Modern Transportation》 1995年第2期109-116,共8页
By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also ... By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also given forillustrating this new approach. 展开更多
关键词 error control neural networks nonlinear codes
在线阅读 下载PDF
Application of hybrid coded genetic algorithm in fuzzy neural network controller
4
作者 杨振强 杨智民 +2 位作者 王常虹 庄显义 宁慧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第1期65-68,共4页
Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during... Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller. 展开更多
关键词 GENETIC algorithm fuzzy neural network COST function HYBRID CODING
在线阅读 下载PDF
SOLUTION OF ASSIGNING BINARY INDEXES TO CODEVECTORS BY A KIND OF HOPFIELD NEURAL NETWORK
5
作者 Lin Jiayu(Key Lab. on ISN, Xidian University, Xi’an 710071) (School of Electron. Sci. and Eng., National Uni. of Defence Tech., Changsha 410073) 《Journal of Electronics(China)》 2001年第1期79-88,共10页
A method of assigning binary indexes to codevectors in vector quantization (VQ)system, which is called pseudo-Gray coding, is presented in this paper by constructing a kind of Hopfield neural network. Pseudo-Gray codi... A method of assigning binary indexes to codevectors in vector quantization (VQ)system, which is called pseudo-Gray coding, is presented in this paper by constructing a kind of Hopfield neural network. Pseudo-Gray coding belongs to joint source/channel coding, which could provide a redundancy-free error protection scheme for VQ of analog signals when the binary indexes of signal codevectors are used as channel symbols on a discrete memoryless channel. Since pseudo-Gray coding is of combinatorial optimization problems which are NP-complete problems,globally optimal solutions are generally impossible. Thus, a kind of Hopfield neural network is used by constructing suitable energy function to get sub-optimal solutions. This kind of Hop field neural network is easily modified to solve simplified version of pseudo-Gray coding for single bit-error channel model. Simulating experimental results show that the method introduced here could offer good performances. 展开更多
关键词 Joint source/channel CODING Pseudo-Gray CODING HOPFIELD neural NETWORK neural NETWORK application
在线阅读 下载PDF
New Approach for 3D Shape Measurement Based on Color-Coded Fringe and Neural Network
6
作者 QIN Da-hui, SHI Yu-sheng, WANG Cong-jun , LI Zhong-wei (State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China) 《Computer Aided Drafting,Design and Manufacturing》 2008年第2期50-56,共7页
A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accur... A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accuracy can be generated. Stereo-pair images obtained from two cameras can be used to compute 3D world coordinates of a point using traditional active triangulation approach, yet the camera calibration is crucial. Neural network is a well-known approach to approximate a nonlinear system without an explicit physical model, in this work it is used to train the stereo vision application system to calculating 3D world coordinates such that the camera calibration can be bypassed. The training set for neural network consists of a variety of stereo-pair images and the corresponding 3D world coordinates. The picture elements correspondence problem is solved by using projected color-coded fringes with different orientations. Color imbalance is completely eliminated by the new color-coded method. Once the high accuracy correspondence of 2D images with 3D points is acquired, high precision 3D points cloud can be recognized by the well trained net. The obvious advantage of this approach is that high spatial resolution can be obtained by the phase-shifting technique and high accuracy 3D object point coordinates are achieved by the well trained net which is independent of the camera model works for any type of camera. Some experiments verified the performance of the method. 展开更多
关键词 3D shape measurement color-coded fringe neural network correspondence problem color imbalance
在线阅读 下载PDF
基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法
7
作者 冷令 王琳 +3 位作者 吕金洪 李浩欣 吴伟斌 高婷 《中国农机化学报》 北大核心 2026年第1期252-257,共6页
针对温室环境数据的维度高、冗余性强,导致数据处理存在压缩比低和峰值信噪比较高的问题,提出基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法。应用改进回归方程,填补温室环境因子数据中的缺失值,针对深度自编码神经网... 针对温室环境数据的维度高、冗余性强,导致数据处理存在压缩比低和峰值信噪比较高的问题,提出基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法。应用改进回归方程,填补温室环境因子数据中的缺失值,针对深度自编码神经网络的内部协变量迁移现象,加入自适应平衡层,结合小批量梯度下降法,构建深度自适应平衡自编码神经网络,提取温室环境因子高阶特征,基于矢量量化思想,判断相对误差,通过实施新码书计算,获得各划分的质心,根据码书训练结果,设计高维数据压缩方法。结果表明,当数据量超过50 GB时,所设计方法的压缩比下降0.7个百分点,降幅为3.8%,整体压缩性能表现优异;峰值信噪比随着采样率变大并未大幅下降,仅降低4 dB,降幅为7.5%,压缩峰值信噪比具备更优的重建保真度。该方法具有更高的压缩比且有效降低信噪比,对提高温室管理的智能化水平具有借鉴价值。 展开更多
关键词 改进回归方程 自编码神经网络 高阶特征提取 温室环境因子 高维数据压缩
在线阅读 下载PDF
Integrating Various Neural Features Based on Mechanism of Intricate Balance and Ongoing Activity: Unified Neural Account Underlying and Correspondent to Mental Phenomena
8
作者 Tien-Wen Lee Gerald Tramontano 《World Journal of Neuroscience》 2021年第2期161-210,共50页
In recent decades, brain science has been enriched from both empirical and computational approaches. Interesting emerging neural features include power-law distribution, chaotic behavior, self-organized criticality, v... In recent decades, brain science has been enriched from both empirical and computational approaches. Interesting emerging neural features include power-law distribution, chaotic behavior, self-organized criticality, variance approach, neuronal avalanches, difference-based and sparse coding, optimized information transfer, maximized dynamic range for information processing, and reproducibility of evoked spatio-temporal motifs in spontaneous activities, and so on. These intriguing findings can be largely categorized into two classes: complexity and regularity. This article would like to highlight that the above-mentioned properties although look diverse and unrelated, but actually may be rooted in a common foundation—excitatory and inhibitory balance (EIB) and ongoing activities (OA). To be clear, description and observation of neural features are phenomena or epiphenomena, while EIB-OA is the underlying mechanism. The EIB is maintained in a dynamic manner and may possess regional specificity, and importantly, EIB is organized along the boundary of phase transition which has been called criticality, bifurcation or edge of chaos. OA is composed of spontaneous organized activity, physiological noise, non-physiological noise and the interacting effect between OA and evoked activities. Based on EIB-OA, the brain may accommodate the property of chaos and regularity. We propose “virtual brain space” to bridge brain dynamics and mental space, and “code driving complexity hypothesis” to integrate regularity and complexity. The functional implication of oscillation and energy consumption of the brain are discussed. 展开更多
关键词 Excitation Inhibition SYNAPSE SPIKES neural codes Oscillation Functional Magnetic Resonance Imaging (fMRI) Electroencephalography (EEG) Chaos Complexity ATTRACTOR Regularity Self-Organized Criticality Entropy
在线阅读 下载PDF
Neural-Polar码:一种基于深度学习的新型信道编码方案 被引量:2
9
作者 金林贤 王旭东 吴楠 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第3期430-437,共8页
为应对新型移动通信系统智能性的需求以及在难以进行人工建模的复杂信道环境下进行可靠通信的问题,基于Polar码的编译码递归结构提出一种新型神经网络信道编码方案,即Neural-Polar码。该方案利用神经网络将Polar码编译码递归结构中父、... 为应对新型移动通信系统智能性的需求以及在难以进行人工建模的复杂信道环境下进行可靠通信的问题,基于Polar码的编译码递归结构提出一种新型神经网络信道编码方案,即Neural-Polar码。该方案利用神经网络将Polar码编译码递归结构中父、子节点间的线性映射变成非线性映射,引入快速连续抵消(successive cancellation, SC)译码的思想,解决在完全二叉树上构建Neural-Polar码造成网络结构过大的问题。仿真实验表明,Neural-Polar码可以获得优于经典SC译码算法的误码率(bit error rate, BER)和误块率(block error rate, BLER)性能,对网络的联合训练使得Neural-Polar码能够自动学习信道特性,具有更好的信道适应性和鲁棒性。Neural-Polar码将传统的对复杂信道进行人工建模分析的难题交给机器,充分体现出其编译码的智能性。 展开更多
关键词 信道编码 极化码 神经网络 误码率(BER)
在线阅读 下载PDF
Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information 被引量:2
10
作者 Yue Wang Naizheng Liu +5 位作者 Longyu Ma Lupeng Yue Shuang Cui Feng-Yu Liu Ming Yi You Wan 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第2期201-217,共17页
As a main structure of the limbic system,the hippocampus plays a critical role in pain perception and chronicity.The ventral hippocampal CA1(vCA1)is closely associated with negative emotions such as anxiety,stress,and... As a main structure of the limbic system,the hippocampus plays a critical role in pain perception and chronicity.The ventral hippocampal CA1(vCA1)is closely associated with negative emotions such as anxiety,stress,and fear,yet how vCA1 neurons encode nociceptive information remains unclear.Using in vivo electrophysiological recording,we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats.Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions:the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli,whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties.Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors.Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats,whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain.These results provide direct evidence for the representations of nociceptive information in vCA1. 展开更多
关键词 Ventral hippocampal CA1 NOCICEPTION Mechanical allodynia In vivo recording neural coding
原文传递
An Integrative Account of Neural Network Interaction: Neuro-Messenger Theory 被引量:2
11
作者 Tien-Wen Lee 《World Journal of Neuroscience》 2021年第2期124-136,共13页
Neural interaction is realized by information exchange. It seemed that the information amount does not keep constant and may be reduced during the travel between neural nodes. In addition, recent research of neural co... Neural interaction is realized by information exchange. It seemed that the information amount does not keep constant and may be reduced during the travel between neural nodes. In addition, recent research of neural coding has suggested that neural information could be represented by parsimonious spiking pattern, named sparse coding. Based on the above observation, neuro-messenger theory (NMT) is proposed to explicate the communicative process between the source and the target neural nodes. Neuro-messenger is a sparse code which does not have to carry every detail of the dynamics in source node. Other formats of neural coding (e.g., temporal and rate coding) could be the precursors of neuro-messengers, and the repeated spatiotemporal patterns buried in the ongoing brain activities may be the circulated neuro-messengers<span> from diverse origins. Referred to chaos/complexity theory, information can be recovered at target node where neuro-messenger serves as a facilitator to locate the trajectory at proper </span><span style="font-family:Verdana;"></span><span style="font-family:;" "=""><span>attractor, and hence the associated psychological entity. In contrast to conventional concepts of encoding and decoding, the processes of encoding in source node, issuing neuro-messengers,</span> and recovering information at target node are summarized as “three-facet coding scheme”. The design of neuro-messenger enables the brain to utilize energy in an efficient and economical way. NMT may have substantial implication in several major psychiatric disorders. Some psychiatric conditions could be mediated by abnormal neuro-messengers that coerce the regional neuro-dynamics to delve into maladaptive attractors and hence the characteristic symptoms.</span> 展开更多
关键词 Auditory Hallucination DELUSION neural Coding Neuro-Messenger Obsessive-Compulsive Disorder Sparse Coding
在线阅读 下载PDF
CodeScore-R:用于评估代码合成功能准确性的自动化鲁棒指标
12
作者 杨光 周宇 +1 位作者 陈翔 张翔宇 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期291-306,共16页
评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一... 评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一种自动化评估指标,在无需测试用例时仍可评估预测代码的功能准确性.此外,好的评估指标应当具有鲁棒性,即预测代码发生微小改变时,评估指标仍能保持其准确性.为此,提出了一种基于UniXcoder和对比学习的自动化鲁棒指标CodeScore-R,用于评估代码合成的功能准确性. CodeScore-R采用草图化处理、语法等价转换和变异测试等技术手段,有效减轻了标识符、语法结构和运算符对评估结果的干扰.实验结果表明,在Java和Python语言上的代码生成和迁移任务中,CodeScore-R的表现优于其他无需测试用例的评估指标,且更接近Pass@k指标,并具有更强的鲁棒性. 展开更多
关键词 代码合成评估指标 功能准确性 鲁棒性 代码合成 神经网络
在线阅读 下载PDF
A Neural Excitability Based Coding Strategy for Cochlear Implants
13
作者 W. K. Lai N. Dillier M. Killian 《Journal of Biomedical Science and Engineering》 2018年第7期159-181,共23页
A novel cochlear implant coding strategy based on the neural excitability has been developed and implemented using Matlab/Simulink. Unlike present day coding strategies, the Excitability Controlled Coding (ECC) strate... A novel cochlear implant coding strategy based on the neural excitability has been developed and implemented using Matlab/Simulink. Unlike present day coding strategies, the Excitability Controlled Coding (ECC) strategy uses a model of the excitability state of the target neural population to determine its stimulus selection, with the aim of more efficient stimulation as well as reduced channel interaction. Central to the ECC algorithm is an excitability state model, which takes into account the supposed refractory behaviour of the stimulated neural populations. The excitability state, used to weight the input signal for selecting the stimuli, is estimated and updated after the presentation of each stimulus, and used iteratively in selecting the next stimulus. Additionally, ECC regulates the frequency of stimulation on a given channel as a function of the corresponding input stimulus intensity. Details of the model, implementation and results of benchtop plus subjective tests are presented and discussed. Compared to the Advanced Combination Encoder (ACE) strategy, ECC produces a better spectral representation of an input signal, and can potentially reduce channel interactions. Pilot test results from 4 CI recipients suggest that ECC may have some advantage over ACE for complex situations such as speech in noise, possibly due to ECC’s ability to present more of the input spectral contents compared to ACE, which is restricted to a fixed number of maxima. The ECC strategy represents a neuro-physiological approach that could potentially improve the perception of more complex sound patterns with cochlear implants. 展开更多
关键词 COCHLEAR IMPLANTS SPEECH Coding AUDITORY neural EXCITABILITY Channel Interaction
暂未订购
Predictive Block-Matching Algorithm for Wireless Video Sensor Network Using Neural Network
14
作者 Zhuge Yan Siu-Yeung Cho Sherif Welsen Shaker 《Journal of Computer and Communications》 2017年第10期66-77,共12页
This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the tradit... This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the traditional prediction model was proposed 26 years ago. It is straight forward but not accurate enough. The proposed back propagation neural network has 5 inputs, 5 neutrons and 1 output. Because of its simplicity, it requires very little calculation power which is negligible compared with existing computation complexity. The test results show 10% - 30% higher prediction accuracy and PSNR improvement up to 0.3 dB. The above advantages make it a feasible replacement of the current model. 展开更多
关键词 Wireless Sensor NETWORK PREDICTIVE BLOCK-MATCHING neural NETWORK High Efficaciously Video CODING
在线阅读 下载PDF
A fast audio digital watermark method based on counter-propagation neural networks
15
作者 WU Guo-hua ZHOU Xiao-dong 《通讯和计算机(中英文版)》 2009年第7期20-25,共6页
关键词 数字水印技术 CPN 神经系统 网络
在线阅读 下载PDF
面向高分辨率图像传输的CNN网络编码方案研究 被引量:1
16
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
基于图神经网络的嵌入式设备固件漏洞检测
17
作者 姚军 慕涛涛 《计算机应用与软件》 北大核心 2025年第9期255-262,共8页
随着嵌入式设备的种类和数量日益繁多,嵌入式设备的安全性也面临着巨大的挑战。通常,安全专家可以手动识别嵌入式设备的固件程序中存在的软件漏洞,但是人工分析非常耗时费力。针对上述问题,提出一种基于代码属性图及双向图神经网络的固... 随着嵌入式设备的种类和数量日益繁多,嵌入式设备的安全性也面临着巨大的挑战。通常,安全专家可以手动识别嵌入式设备的固件程序中存在的软件漏洞,但是人工分析非常耗时费力。针对上述问题,提出一种基于代码属性图及双向图神经网络的固件程序漏洞检测方法,从源代码级别自动检测固件程序中存在的软件漏洞。为了验证本方法的可行性,对从SARD收集的软件漏洞数据集和真实世界漏洞数据集进行实验验证,实验结果表明,漏洞检测精度和F1分数最高分别达到了93.4%和86.54%,可以显著提高软件漏洞的检测能力。 展开更多
关键词 嵌入式设备 图神经网络 代码属性图 漏洞检测
在线阅读 下载PDF
低密度奇偶校验码正则化神经网络归一化最小和译码算法
18
作者 周华 周鸣 张立康 《电子与信息学报》 北大核心 2025年第5期1486-1493,共8页
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致... 低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。 展开更多
关键词 低密度奇偶校验码 神经网络 归一化最小和译码 过拟合 正则化
在线阅读 下载PDF
基于分层特征注意力机制的代码漏洞检测方法
19
作者 朱向雷 李长娟 +1 位作者 侯潇逸 赵硕 《计算机仿真》 2025年第11期473-477,共5页
提高车辆系统代码漏洞检测性能,保证汽车安全可靠运行是当下智能交通研究的重点。为解决传统网络漏洞检测算法存在漏检率高、检测精度低的问题,将HANN分层特征注意力机制与SVM分类器有机融合,提出了DGG-HANN-SVM车辆系统代码漏洞检测算... 提高车辆系统代码漏洞检测性能,保证汽车安全可靠运行是当下智能交通研究的重点。为解决传统网络漏洞检测算法存在漏检率高、检测精度低的问题,将HANN分层特征注意力机制与SVM分类器有机融合,提出了DGG-HANN-SVM车辆系统代码漏洞检测算法。算法首先采用DGG代码动态切片处理,通过计算节点集并建立动态依赖图,有效提升了代码信息的过滤检测性能;然后将切片代码输入HANN分层注意力神经网络中,采用代码文档表示与分层权重学习的方法,提高漏洞代码特征的可辨识特性;最终基于SVM分类器上,通过十折交叉验证,构建出DGG-HANN-SVM检测模型。代码漏洞检测仿真结果显示,与DT、RF、KNN和CNN四类传统代码漏洞检测算法相比,在CWE-COM数据集上,DGG-HANN-SVM算法漏洞检测的精准度平均提升了5.51%,漏检率平均降低6.74%、稳定度平均增加了4.92%,即上述算法的漏检率低、精确度高,同时具有较好的检测稳定性。综上,在智能交通中,基于分层注意力机制的代码漏洞检测算法能保障车辆系统安全稳定运行,具有重要的仿真研究价值。 展开更多
关键词 分层特征注意力神经网络 代码漏洞检测 动态切片
在线阅读 下载PDF
融合预训练模型和图卷积网络的代码漏洞检测
20
作者 黄媛 《长江工程职业技术学院学报》 2025年第4期27-33,共7页
由于大规模预训练模型在自然语言处理领域取得的进步,面向编程语言的预训练模型也在代码漏洞检测任务上取得了良好进展。但现有的预训练模型在代码漏洞检测任务上仅将代码视作序列处理,忽视了代码自身包含的语义结构信息,因而限制了模... 由于大规模预训练模型在自然语言处理领域取得的进步,面向编程语言的预训练模型也在代码漏洞检测任务上取得了良好进展。但现有的预训练模型在代码漏洞检测任务上仅将代码视作序列处理,忽视了代码自身包含的语义结构信息,因而限制了模型对代码漏洞的检测效果。为此,结合预训练模型和图卷积网络提出一种新的代码漏洞检测模型,首先对源代码分析提取代码的抽象语法树、控制流图以及程序依赖图,并综合三种表示得到完整的代码图;其次,对代码图使用图卷积网络训练提取代码的图特征,同时使用预训练模型提取代码的上下文语义特征;最后将两类特征进行融合用于指导漏洞检测。在公开数据集上的实验结果表明,所提方法较两个预训练模型,准确率和F1指标分别最高可提高6.26%和15.76%,与同领域基线方法相比,准确率和F1指标分别最大可提高20.20%和19.33%。 展开更多
关键词 预训练模型 图神经网络 代码漏洞检测 深度学习 代码表征
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部