期刊文献+
共找到27,352篇文章
< 1 2 250 >
每页显示 20 50 100
基于融合劣化指标和VMD-Informer的水电机组劣化趋势预测
1
作者 宋阿妮 陈亦真 +2 位作者 詹云峰 李超顺 付波 《中国农村水利水电》 北大核心 2025年第5期90-96,共7页
水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和... 水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和VMD-Informer的机组劣化趋势预测方法。首先构建KAN健康模型拟合工况参数与振摆值之间的映射关系,然后通过对比模型输出值与实测振摆值在不同指标下的差异得到多个劣化序列,运用遗传算法对多个劣化序列进行寻优获取融合劣化指标,兼顾多个指标的优势,更为准确地反映机组劣化趋势。之后用变分模态分解(VMD)将融合劣化序列分解为多个分量,最后利用Informer预测模型对分解后的各个分量进行多步预测并重构得到最终的预测结果,从而实现对机组运行状况的准确评估和预测。实例分析表明,所提方法能够生成可靠的劣化趋势,同时在预测上能学习劣化趋势序列的长期趋势和局部特征,预测精度更高。 展开更多
关键词 水电机组 劣化评估 退化预测 Kolmogorov-Arnold Network 遗传算法 INFORMER
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
2
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
面向VVC的QP自适应环路滤波器
3
作者 刘鹏宇 金鹏程 《北京工业大学学报》 北大核心 2025年第10期1171-1178,共8页
现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路... 现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。 展开更多
关键词 视频编码 多功能视频编码(versatile video coding VVC)标准 环路滤波 卷积神经网络(convolutional neural network CNN) 深度学习 图像去噪
在线阅读 下载PDF
不同地质条件下盾构机掘进速度预测方法 被引量:1
4
作者 王毓灿 元海文 +2 位作者 孙齐 杨磊 肖长诗 《仪器仪表学报》 北大核心 2025年第3期30-40,共11页
盾构机掘进性能受不同地质条件影响明显。该研究以电驱土压平衡盾构机为对象,统计了961环3761006条掘进数据,包括砂质黏性土层等6种地质组合以及对应的盾构机掘进参数。通过相关性分析,确定与掘进速度紧密相关的特征变量,包括总推力、... 盾构机掘进性能受不同地质条件影响明显。该研究以电驱土压平衡盾构机为对象,统计了961环3761006条掘进数据,包括砂质黏性土层等6种地质组合以及对应的盾构机掘进参数。通过相关性分析,确定与掘进速度紧密相关的特征变量,包括总推力、同步注浆量和泡沫压力等。然后,针对实际盾构工程存在数据分布不均衡问题,对原始数据高斯重采样,生成包含19950个有效样本的数据集。随后,提出了一种基于Kolmogorov-Arnold Network(KAN)的盾构机掘进速度预测方法,KAN模型通过多层次复合函数的组合逼近非线性关系,将多因素耦合的非线性关系又近似分解为一系列单变量函数组合,在确保模型预测精度的同时,极大提高计算效率。以深圳至大亚湾地铁盾构工程为例,开展实验论证,结果表明:与卷积神经网络(CNN)、长短时记忆网络(LSTM)等模型相比,KAN在处理高维数据和非线性耦合关系方面表现出优越性能,其预测结果能够精确拟合实测数据。在地质条件较为单一(如全风化混合花岗岩、土状强风化混合花岗岩)的预测误差较低,平均误差控制在5.12%~7.02%,而在混合地层中预测误差有所增大,但总体平均误差仍控制在15%以内。该方法为复杂地质条件下盾构机施工优化提供了有力的决策支持。未来将地质空间分布信息以序列形式引入模型,并增加刀盘磨损的输出预测,为盾构施工的智能化管理提供更加全面的解决方案。 展开更多
关键词 盾构机 掘进预测 地质分析 特征选择 Kolmogorov-Arnold Network
原文传递
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
5
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
6
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES Network
原文传递
基于文件工作流和强化学习的工程项目文件管理优化方法
7
作者 司鹏搏 庞睿 +2 位作者 杨睿哲 孙艳华 李萌 《北京工业大学学报》 北大核心 2025年第10期1162-1170,共9页
为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模... 为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。 展开更多
关键词 文件工作流 传输时间 马尔可夫过程 对抗式双重深度Q网络(dueling double deep Q network D3QN) 文件管理 联合优化
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
8
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
基于Transformer的遥感图像变化检测研究进展
9
作者 卓力 于婉婷 +1 位作者 贾童瑶 李嘉锋 《北京工业大学学报》 北大核心 2025年第7期851-866,共16页
光照、季节、气候、太阳高度和角度变化等因素的影响,以及目标区域的散乱性和尺度多变性,使得遥感图像变化检测领域面临着巨大的技术挑战。近年来,Transformer在自然语言处理、目标检测、图像分割等领域取得成功,成为遥感图像变化检测... 光照、季节、气候、太阳高度和角度变化等因素的影响,以及目标区域的散乱性和尺度多变性,使得遥感图像变化检测领域面临着巨大的技术挑战。近年来,Transformer在自然语言处理、目标检测、图像分割等领域取得成功,成为遥感图像变化检测的研究热点。因此,综述了基于Transformer的最新研究进展,分析了基于纯Transformer和基于卷积神经网络(convolutional neural network,CNN)+Transformer混合架构的2类方法,对它们在多种遥感图像公共数据集上的性能进行了比较,总结了不同方法的优缺点,并展望了未来可能的发展趋势。 展开更多
关键词 TRANSFORMER 遥感图像 变化检测 纯Transformer 卷积神经网络(convolutional neural network CNN) 混合架构
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
10
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
11
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
Metabolic pathway modulation by olanzapine:Multitarget approach for treating violent aggression in patients with schizophrenia 被引量:1
12
作者 Yan-Ning Song Shuang Xia +14 位作者 Zhi Sun Yong-Chao Chen Lu Jiao Wen-Hua Wan Hong-Wei Zhang Xiao Guo Hua Guo Shou-Feng Jia Xiao-Xin Li Shi-Xian Cao Li-Bin Fu Meng-Meng Liu Tian Zhou Lv-Feng Zhang Qing-Quan Jia 《World Journal of Psychiatry》 SCIE 2025年第1期37-53,共17页
BACKGROUND The use of network pharmacology and blood metabolomics to study the patho-genesis of violent aggression in patients with schizophrenia and the related drug mechanisms of action provides new directions for r... BACKGROUND The use of network pharmacology and blood metabolomics to study the patho-genesis of violent aggression in patients with schizophrenia and the related drug mechanisms of action provides new directions for reducing the risk of violent aggression and optimizing treatment plans.AIM To explore the metabolic regulatory mechanism of olanzapine in treating patients with schizophrenia with a moderate to high risk of violent aggression.METHODS Metabolomic technology was used to screen differentially abundant metabolites in patients with schizophrenia with a moderate to high risk of violent aggression before and after olanzapine treatment,and the related metabolic pathways were identified.Network pharmacology was used to establish protein-protein interaction networks of the core targets of olanzapine.Gene Ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were subsequently performed.RESULTS Compared with the healthy group,the patients with schizophrenia group presented significant changes in the levels of 24 metabolites related to the disruption of 9 metabolic pathways,among which the key pathways were the alanine,aspartate and glutamate metabolism and arginine biosynthesis pathways.After treatment with olanzapine,the levels of 10 differentially abundant metabolites were significantly reversed in patients with schizophrenia.Olanzapine effectively regulated six metabolic pathways,among which the key pathways were alanine,aspartate and glutamate metabolism and arginine biosynthesis pathways.Ten core targets of olanzapine were involved in several key pathways.CONCLUSION The metabolic pathways of alanine,aspartate,and glutamate metabolism and arginine biosynthesis are the key pathways involved in olanzapine treatment for aggressive schizophrenia. 展开更多
关键词 SCHIZOPHRENIA Violent aggression OLANZAPINE Metabolomics Network pharmacology
暂未订购
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
13
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
14
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Intelligent Photonics:A Disruptive Technology to Shape the Present and Redefine the Future 被引量:6
15
作者 Danlin Xu Yuchen Ma +1 位作者 Guofan Jin Liangcai Cao 《Engineering》 2025年第3期186-213,共28页
Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ... Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects. 展开更多
关键词 Artificial intelligence Optical neural network Deep learning Metaphotonics HOLOGRAPHY Quantum photonics
在线阅读 下载PDF
Leveraging ROTI map derived from Indonesian GNSS receiver network for advancing study of Equatorial Plasma Bubble in Southeast/East Asia 被引量:1
16
作者 Prayitno Abadi Ihsan N.Muafiry +8 位作者 Teguh N.Pratama Angga Y.Putra Suraina Gatot H.Pramono Sidik T.Wibowo Febrylian F.Chabibi Umar A.Ahmad Wildan P.Tresna Asnawi 《Earth and Planetary Physics》 EI CAS 2025年第1期101-116,共16页
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa... This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research. 展开更多
关键词 Equatorial Plasma Bubble(EPB) GNSS receivers’network Indonesia Continuously Operating Reference Station(Ina-CORS) ionospheric map Rate of TEC change index(ROTI)map
在线阅读 下载PDF
基于多尺度特征融合的医学影像报告生成
17
作者 廖小龙 宋亚男 +3 位作者 徐荣华 陈梓鑫 郑子强 邝家明 《无线互联科技》 2025年第10期74-79,共6页
针对医学影像报告生成中细小病变区域容易被忽略的问题,文章提出一种基于Swin-Transformer(SwinT)的多尺度特征融合方法。首先,通过提出的多尺度自适应特征融合模块,将SwinT各个stage提取到的多个不同尺度的特征进行融合,提取更多细节... 针对医学影像报告生成中细小病变区域容易被忽略的问题,文章提出一种基于Swin-Transformer(SwinT)的多尺度特征融合方法。首先,通过提出的多尺度自适应特征融合模块,将SwinT各个stage提取到的多个不同尺度的特征进行融合,提取更多细节信息。其次,使用Kolmogorov-Arnold Network替换SwinT-Block中的Multilayer Perceptron层。最后,采用预训练策略和基于去噪扩散概率模型的数据增强,加强模型对病变和非病变特征的区分能力。在印第安纳大学的胸部X光数据集(IU X-Ray)上进行验证,实验结果显示,该方法能够提取更多细小病变特征,从而提升报告生成的准确性。 展开更多
关键词 医学影像报告 Swin-Transformer 多尺度特征融合 Kolmogorov-Arnold Network
在线阅读 下载PDF
All-optical nonlinear activation functions realized on phasechange photonic integrated circuits with microheaters 被引量:3
18
作者 Jiyuan Jiang Bingxin Ding +8 位作者 Shiyu Li Xin Zhang Haihua Wang Jie Wu Xiaoyan Liu Zhou Wang Xiaojuan Lian Wen Huang Lei Wang 《Journal of Semiconductors》 2025年第2期122-131,共10页
Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic... Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic nonlinear activa-tion function(NAF),progress on efficient and easily implementable optical nonlinear activation function(ONAF)was barely reported.To address this issue,we proposed a programmable,low-loss ONAF device based on a silicon micro-ring resonator capped with the Antimony selenide(Sb_(2)Se_(3))thin films,and with indium tin oxide(ITO)used as the microheater.Leveraging our self-developed phase-transformation kinetic and optical models,we successfully simulated the phase-transition behavior of Sb_(2)Se_(3)and three different ONAFs—ELU,ReLU,and radial basis function(RBF)were achieved according to discernible optical responses of proposed devices under different phase-change extents.Classification results from the Fashion MNIST dataset demonstrated that these ONAFs can be considered as appropriate substitutes for traditional NAF.This indicated the bright prospect of the proposed device for nonlinear activation function in future photonic neural networks. 展开更多
关键词 ONAF Sb_(2)Se_(3) MICROHEATER photonic neural networks
在线阅读 下载PDF
Phase changes and electromagnetic wave absorption performance of XZnC(X=Fe/Co/Cu)loaded on melamine sponge hollow carbon composites 被引量:3
19
作者 Xiubo Xie Ruilin Liu +4 位作者 Chen Chen Di Lan Zhelin Chen Wei Du Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期566-577,共12页
Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melami... Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers. 展开更多
关键词 electromagnetic wave absorption three dimensional network structure melamine sponge derived carbon non-stoichiometric carbide
在线阅读 下载PDF
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions 被引量:2
20
作者 Lintao Han Hengyi Lv +3 位作者 Chengshan Han Yuchen Zhao Qing Han Hailong Liu 《Journal of Environmental Sciences》 2025年第6期203-218,共16页
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we... Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability. 展开更多
关键词 Remote sensing Image dehazing Environmental monitoring Neural network INTERPRETABILITY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部