期刊文献+
共找到66,037篇文章
< 1 2 250 >
每页显示 20 50 100
Additive manufacturing techniques for WC−Co cemented carbides: Principle, progress, and perspective
1
作者 Zhan-he LIU Ke-chao ZHOU +5 位作者 Kai-hua SHI Xiao-zan WU He XIAO Chao-qun PENG Ri-chu WANG Xiao-feng WANG 《Transactions of Nonferrous Metals Society of China》 2026年第1期1-24,共24页
Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipmen... Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy. 展开更多
关键词 cemented carbides additive manufacturing WC−Co direct additive manufacturing indirect additive manufacturing microstructure complex shapes
在线阅读 下载PDF
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
2
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Additive Manufacturing for Nanogenerators:Fundamental Mechanisms,Recent Advancements,and Future Prospects
3
作者 Zhiyu Tian Gary Chi-Pong Tsui +3 位作者 Yuk-Ming Tang Chi-Ho Wong Chak-Yin Tang Chi-Chiu Ko 《Nano-Micro Letters》 2026年第1期782-826,共45页
Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Th... Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Things.In this review,an in-depth analysis of AM for piezoelectric and triboelectric nanogenerators is presented from the perspectives of fundamental mechanisms,recent advancements,and future prospects.It highlights AM-enabled advantages of versatility across materials,structural topology optimization,microstructure design,and integrated printing,which enhance critical performance indicators of nanogenerators,such as surface charge density and piezoelectric constant,thereby improving device performance compared to conventional fabrication.Common AM techniques for nanogenerators,including fused deposition modeling,direct ink writing,stereolithography,and digital light processing,are systematically examined in terms of their working principles,improved metrics(output voltage/current,power density),theoretical explanation,and application scopes.Hierarchical relationships connecting AM technologies with performance optimization and applications of nanogenerators are elucidated,providing a solid foundation for advancements in energy harvesting,self-powered sensors,wearable devices,and human-machine interaction.Furthermore,the challenges related to fabrication quality,cross-scale manufacturing,processing efficiency,and industrial deployment are critically discussed.Finally,the future prospects of AM for nanogenerators are explored,aiming to foster continuous progress and innovation in this field. 展开更多
关键词 Additive manufacturing NANOGENERATORS Output performance Energy harvesting Self-powered sensors
在线阅读 下载PDF
Powering High-Quality Development:High-End Manufacturing,Human Capital Allocation,and Economic Growth
4
作者 Zhu Lan Wu Ziwei Wang Yong 《China Economist》 2026年第1期33-53,共21页
By comparing the growth trajectories of East Asia and Latin America,this study finds that during industrialization,East Asian economies actively advanced their manufacturing sectors toward high-end production and achi... By comparing the growth trajectories of East Asia and Latin America,this study finds that during industrialization,East Asian economies actively advanced their manufacturing sectors toward high-end production and achieved a higher relative density of high-skilled labor within this sector.In contrast,Latin American economies experienced a“low-end lock-in”in manufacturing,with high-skilled labor more heavily concentrated in the service sector.To provide a unified explanation of these patterns of industrial transformation and labor allocation,this paper develops a three-sector general equilibrium model that includes basic manufacturing(BM),high-end manufacturing(HM),and services,and incorporates labor heterogeneity.The model captures how,under different development thresholds for HM,the allocation of high-skilled labor across sectors leads to two distinct structural transformation paths:from BM to HM,or from BM to services.These paths,in turn,generate different trajectories of human capital accumulation and economic growth performance.Simulation analysis shows that dynamically adjusted industrial policies are more effective than static ones,and that combining education policy with industrial policy yields better outcomes than either policy alone.This study extends theoretical research on industrial structural transformation,highlights the importance of HM for latecomer economies,and offers theoretical underpinnings and decision-making insights for advancing new industrialization and deepening integration between industrial and talent chains. 展开更多
关键词 high-end manufacturing human capital allocation industrial structural transformation proactive government
在线阅读 下载PDF
Tracking a High-Tech Transition--How technology is powering Guangdong’s manufacturing transformation
5
作者 HU FAN 《ChinAfrica》 2026年第1期30-32,共3页
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w... The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot. 展开更多
关键词 othello kitchenware museum TECHNOLOGY industrial strength high tech transition guangdong manufacturing transformation
原文传递
Nanjing:From Manufacturing Base to Research Hub
6
作者 ZHAO PIAO 《China Today》 2026年第1期48-49,共2页
Nanjing’s determination to transform itself from a production base to a research center reflects China’s evolution toward higher-quality development.A refrigerator that thaws frozen meat in 10 minutes and then keeps... Nanjing’s determination to transform itself from a production base to a research center reflects China’s evolution toward higher-quality development.A refrigerator that thaws frozen meat in 10 minutes and then keeps it fresh,a cooker hood that remains clean even after 10 years without disassembling it for cleaning. 展开更多
关键词 thaws frozen meat cooker hood high quality development manufacturing RESEARCH transformation REFRIGERATOR
在线阅读 下载PDF
Applying Neural-Network-Based Machine Learning to Additive Manufacturing:Current Applications,Challenges,and Future Perspectives 被引量:26
7
作者 Xinbo Qi Guofeng Chen +2 位作者 Yong Li Xuan Cheng Changpeng Li 《Engineering》 SCIE EI 2019年第4期721-729,共9页
Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturi... Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturing.However,AM processing parameters are difficult to tune,since they can exert a huge impact on the printed microstructure and on the performance of the subsequent products.It is a difficult task to build a process-structure-property-performance(PSPP)relationship for AM using traditional numerical and analytical models.Today,the machine learning(ML)method has been demonstrated to be a valid way to perform complex pattern recognition and regression analysis without an explicit need to construct and solve the underlying physical models.Among ML algorithms,the neural network(NN)is the most widely used model due to the large dataset that is currently available,strong computational power,and sophisticated algorithm architecture.This paper overviews the progress of applying the NN algorithm to several aspects of the AM whole chain,including model design,in situ monitoring,and quality evaluation.Current challenges in applying NNs to AM and potential solutions for these problems are then outlined.Finally,future trends are proposed in order to provide an overall discussion of this interdisciplinary area. 展开更多
关键词 ADDITIVE manufacturing 3D PRINTING NEURAL network MACHINE learning Algorithm
在线阅读 下载PDF
Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System 被引量:4
8
作者 曹政才 邓积杰 +1 位作者 刘民 王永吉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1081-1088,共8页
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon... Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method. 展开更多
关键词 semiconductor manufacturing system bottleneck prediction adaptive network-based fuzzy inference system
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
9
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Intelligent Manufacturing of a Bibliometric Review:from Frontier Hotspots to Key Technologies and Applications 被引量:1
10
作者 Xiaohan Sun Lan Dong +12 位作者 Zongyi Liu Aiguo Qin Jixin Liu Zongming Zhou Xu Yan Guang Wang Bo Liu Zhigang Zhou Xiangguo Chen Yuewen Feng Bo Zhang Danyang Liu Changhe Li 《Chinese Journal of Mechanical Engineering》 2025年第6期313-349,共37页
Intelligent manufacturing(IM),a driving force behind the fourth industrial revolution,is reshaping the manufacturing sector by enhancing productivity,efficiency,and sustainability.Despite the rapid technological advan... Intelligent manufacturing(IM),a driving force behind the fourth industrial revolution,is reshaping the manufacturing sector by enhancing productivity,efficiency,and sustainability.Despite the rapid technological advancements in IM,comprehensive bibliometric reviews remain limited.This article systematically reviews the latest research in IM,addressing emerging hotspots,key technologies,and their applications across the entire product manufacturing cycle.Bibliometric analysis is employed to identify research trends visualize publication volume,collaboration patterns,research domains,co-citations,and emerging areas of interest.The article then examines key technologies supporting IM,including sensors,the Internet of Things(IoT),big data analytics,cloud computing,artificial intelligence(AI),digital twins,and virtual reality(VR)/augmented reality(AR).Furthermore,it explores the application of these technologies throughout the manufacturing cycle-from intelligent reliability design,material transportation and tracking,to intelligent planning and scheduling,machining and fabrication,monitoring and maintenance,quality inspection and control,warehousing and management,and sustainable green manufacturing—through specific case studies.Lastly,the article discusses future research directions,highlighting the increasing global market and the need for enhanced interdisciplinary collaboration,technological integration,computing power upgrades,and attention to security and privacy in IM.This study provides valuable insights for scholars and serves as a guide for future research and strategic investment decisions,offering a comprehensive view of the IM field. 展开更多
关键词 Intelligent manufacturing BIBLIOMETRICS Artificial intelligence Sustainable manufacturing Full-cycle product manufacturing
在线阅读 下载PDF
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:3
11
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
When Embodied AI Meets Industry 5.0:Human-Centered Smart Manufacturing 被引量:4
12
作者 Jing Xu Qiyu Sun +1 位作者 Qing-Long Han Yang Tang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期485-501,共17页
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste... As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape. 展开更多
关键词 Embodied AI human-centered manufacturing Industry 5.0 internet of things large multi-mode language models
在线阅读 下载PDF
Data Elements Accumulation Enabling the“Threeizations”Upgrading of Manufacturing:Theoretical Mechanism 被引量:1
13
作者 Hao Xie 《Proceedings of Business and Economic Studies》 2025年第2期298-304,共7页
The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This pap... The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry. 展开更多
关键词 Data elements manufacturing HIGH-END INTELLIGENT Green
在线阅读 下载PDF
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
14
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS Additive manufacturing
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
15
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Mixing Intensification for Advanced Materials Manufacturing 被引量:1
16
作者 Chao Yang Guang-Wen Chu +5 位作者 Xin Feng Yan-Bin Li Jie Chen Dan Wang Xiaoxia Duan Jian-Feng Chen 《Engineering》 2025年第1期135-144,共10页
The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.... The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.Mixing intensification encompasses innovative methods and tools that address the limitations of inadequate mixing within reactors,enabling efficient reaction scaling and boosting the productivity of industrial processes.This review provides a concise introduction to the fundamentals of multiphase mixing,followed by case studies highlighting the application of mixing intensification in the production of energy-storage materials,advanced optical materials,and nanopesticides.These examples illustrate the significance of theoretical analysis in informing and advancing engineering practices within the chemical industry.We also explore the challenges and opportunities in this field,offering insights based on our current understanding. 展开更多
关键词 Mixing intensification Chemical reaction Advanced materials High-end manufacturing
在线阅读 下载PDF
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
17
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
在线阅读 下载PDF
Optimal Production Capacity Matching for Blockchain-Enabled Manufacturing Collaboration With the Iterative Double Auction Method 被引量:1
18
作者 Ying Chen Feilong Lin +2 位作者 Zhongyu Chen Changbing Tang Cailian Chen 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期550-562,共13页
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block... The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises. 展开更多
关键词 Blockchain iterative double auction manufacturing collaboration production capacity matching
在线阅读 下载PDF
Developing an Industry-Aligned Curriculum for Aviation Manufacturing Education 被引量:1
19
作者 Jun Miao Shubao Shu +2 位作者 Chengwen Ma Ronghua Du Wei Nie 《Journal of Contemporary Educational Research》 2025年第8期125-134,共10页
This study examines a curriculum system developed at the College of Aviation Manufacturing Industry at Nanchang Hangkong University through Industry-Education Integration(I-E Integration).Drawing on engineering educat... This study examines a curriculum system developed at the College of Aviation Manufacturing Industry at Nanchang Hangkong University through Industry-Education Integration(I-E Integration).Drawing on engineering education principles and reforms in the Mechanical Design,Manufacturing,and Automation program,it aligns course design with industry needs,integrates technological advancements,and embeds production processes.The approach restructures modular course content based on aviation manufacturing technologies,implements project-based learning via a university-enterprise"factory-in-school"training base,and adopts an Outcome-Based Education(OBE)system for evaluation and improvement.This replicable model provides practical insights for industry-focused curriculum development. 展开更多
关键词 I-E Integration Aviation manufacturing curriculum OBE Engineering education reform
在线阅读 下载PDF
High-throughput additive manufacturing and characterization of CoCrFeNi-AlTi high-entropy alloys 被引量:1
20
作者 Xiu-Xiu Lv Wen-Tao Liu +7 位作者 Jia-Qi Li Lian-Zhou Li Cai-Xia Wang Hua Zhang Xin Zhou Liang Jiang Jing-Jing Ruan Li-Long Zhu 《Rare Metals》 2025年第3期1943-1957,共15页
Co-precipitation strengthening of the L1_(2)nano-particles along with hard intermetallic phases,including L2_(1),B2,σandη,demonstrates significant potential for the development of advanced CoCrFeNi high-entropy allo... Co-precipitation strengthening of the L1_(2)nano-particles along with hard intermetallic phases,including L2_(1),B2,σandη,demonstrates significant potential for the development of advanced CoCrFeNi high-entropy alloys(HEAs)with favorable strength-ductility balances.Understanding the alloying effect of Al and Ti on the formation and stability of these intermetallic phases in the CoCrFeNi HEAs is crucial for efficiently exploring the multi-component space for future alloy designs.In the present work,stepwise compositionally graded CoCrFeNi-AlTi HEAs comprising 35 different compositions were fabricated using high-throughput additive manufacturing(AM)and analyzed through a suite of localized characterization techniques.Our analysis confirmed the existence of two primary solid solution phases,face-centered cubic(FCC)and body-centered cubic(BCC),as well as four distinct intermetallic phases,which include L1_(2),L2_(1),σandη.By overlapping the zero phase fraction(ZPF)lines of these phases,the pseudo-ternary phase diagram of the multi-component CoCrFeNi-AlTi system at 800℃was determined,demonstrating good agreement with the literature results.Furthermore,the composition-dependent microstructural evolution and Vickers hardness(HV)were also established,providing numerous opportunities to design CoCrFeNi-AlTi HEAs with superior microstructure stability and balanced strength-ductility properties for structural applications at elevated temperatures. 展开更多
关键词 High-entropy alloys Additive manufacturing Multi-component phase equilibria MICROSTRUCTURE Precipitation strengthening Vickers hardness
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部