期刊文献+
共找到1,242篇文章
< 1 2 63 >
每页显示 20 50 100
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
1
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
2
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern traffic emissions Generalized additive model Bayesian networks LSTM model
原文传递
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
3
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Graph Neural Networks Empowered Origin-Destination Learning for Urban Traffic Prediction
4
作者 Chuanting Zhang Guoqing Ma +1 位作者 Liang Zhang Basem Shihada 《CAAI Transactions on Intelligence Technology》 2025年第4期1062-1076,共15页
Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation systems and is instrumental in bringing smart cities into reality.The fundamental challenges for traffic pre... Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation systems and is instrumental in bringing smart cities into reality.The fundamental challenges for traffic prediction lie in the accurate modelling of spatial and temporal traffic dynamics.Existing approaches mainly focus on modelling the traffic data itself,but do not explore the traffic correlations implicit in origin-destination(OD)data.In this paper,we propose STOD-Net,a dynamic spatial-temporal OD feature-enhanced deep network,to simultaneously predict the in-traffic and out-traffic for each and every region of a city.We model the OD data as dynamic graphs and adopt graph neural networks in STOD-Net to learn a low-dimensional representation for each region.As per the region feature,we design a gating mechanism and operate it on the traffic feature learning to explicitly capture spatial correlations.To further capture the complicated spatial and temporal dependencies among different regions,we propose a novel joint feature,learning block in STOD-Net and transfer the hybrid OD features to each block to make the learning process spatiotemporal-aware.We evaluate the effectiveness of STOD-Net on two benchmark datasets,and experimental results demonstrate that it outperforms the state-of-the-art by approximately 5%in terms of prediction accuracy and considerably improves prediction stability up to 80%in terms of standard deviation. 展开更多
关键词 deep neural networks origin-destination learning spatial-temporal modeling traffic prediction
在线阅读 下载PDF
Diff-IDS:A Network Intrusion Detection Model Based on Diffusion Model for Imbalanced Data Samples
5
作者 Yue Yang Xiangyan Tang +3 位作者 Zhaowu Liu Jieren Cheng Haozhe Fang Cunyi Zhang 《Computers, Materials & Continua》 2025年第3期4389-4408,共20页
With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of ... With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of network security,especially in identifying malicious attacks.However,due to the uneven distribution of network traffic data,particularly the imbalance between attack traffic and normal traffic,as well as the imbalance between minority class attacks and majority class attacks,traditional machine learning detection algorithms have significant limitations when dealing with sparse network traffic data.To effectively tackle this challenge,we have designed a lightweight intrusion detection model based on diffusion mechanisms,named Diff-IDS,with the core objective of enhancing the model’s efficiency in parsing complex network traffic features,thereby significantly improving its detection speed and training efficiency.The model begins by finely filtering network traffic features and converting them into grayscale images,while also employing image-flipping techniques for data augmentation.Subsequently,these preprocessed images are fed into a diffusion model based on the Unet architecture for training.Once the model is trained,we fix the weights of the Unet network and propose a feature enhancement algorithm based on feature masking to further boost the model’s expressiveness.Finally,we devise an end-to-end lightweight detection strategy to streamline the model,enabling efficient lightweight detection of imbalanced samples.Our method has been subjected to multiple experimental tests on renowned network intrusion detection benchmarks,including CICIDS 2017,KDD 99,and NSL-KDD.The experimental results indicate that Diff-IDS leads in terms of detection accuracy,training efficiency,and lightweight metrics compared to the current state-of-the-art models,demonstrating exceptional detection capabilities and robustness. 展开更多
关键词 network traffic feature enhancement diffusion model multi-classification Algorithm 2(continued)13:end for 14:Return y
在线阅读 下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
6
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
在线阅读 下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
7
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
原文传递
Network traffic prediction by a wavelet-based combined model 被引量:1
8
作者 孙韩林 金跃辉 +1 位作者 崔毅东 程时端 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4760-4768,共9页
Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, g... Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, grey theory, and chaos theory, this paper proposes a novel combined model, wavelet-grey-chaos (WGC), for network traffic prediction. In the WGC model, we develop a time series decomposition method without the boundary problem by modifying the standard à trous algorithm, decompose the network traffic into two parts, the residual part and the burst part to alleviate the accumulated error problem, and employ the grey model GM(1,1) and chaos model to predict the residual part and the burst part respectively. Simulation results on real network traffic show that the WGC model does improve prediction accuracy. 展开更多
关键词 network traffic prediction wavelet transform grey model chaos model
原文传递
Two States CBR Modeling of Data Source in Dynamic Traffic Monitoring Sensor Networks 被引量:1
9
作者 罗俊 蒋铃鸽 +2 位作者 何晨 冯宸 郑春雷 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期618-622,共5页
Real traffic information was analyzed in the statistical characteristics and approximated as a Gaussian time series. A data source model, called two states constant bit rate (TSCBR), was proposed in dynamic traffic mo... Real traffic information was analyzed in the statistical characteristics and approximated as a Gaussian time series. A data source model, called two states constant bit rate (TSCBR), was proposed in dynamic traffic monitoring sensor networks. Analysis of autocorrelation of the models shows that the proposed TSCBR model matches with the statistical characteristics of real data source closely. To further verify the validity of the TSCBR data source model, the performance metrics of power consumption and network lifetime was studied in the evaluation of sensor media access control (SMAC) algorithm. The simulation results show that compared with traditional data source models, TSCBR model can significantly improve accuracy of the algorithm evaluation. 展开更多
关键词 wireless sensor network (WSN) traffic monitoring data source model AUTOCORRELATION
在线阅读 下载PDF
On-line Modeling of Non-stationary Network Traffic with Schwarz Information Criterion
10
作者 夏正敏 陆松年 +1 位作者 李建华 铁玲 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第2期213-217,共5页
Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large ... Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic. 展开更多
关键词 network traffic model SELF-SIMILARITY Schwarz information criterion (SIC) discrete wavelet transform (DWT) fractional Gaussian noise (FGN)
原文传递
A traffic model of optical networks based on time-space complexity and traffic grooming
11
作者 赵永利 《High Technology Letters》 EI CAS 2009年第2期198-202,共5页
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o... This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity. 展开更多
关键词 optical networks traffic model time-space complexity scaling-free SELF-SIMILARITY traffic grooming
在线阅读 下载PDF
Simulating Network Traffic with a DWT-based Model
12
作者 Jing'an Ren Jianping Li 《通讯和计算机(中英文版)》 2005年第11期34-37,共4页
在线阅读 下载PDF
MULTI-CLASS TRAFFIC QOS ROUTING FOR LEO SATELLITE NETWORKS 被引量:3
13
作者 蒋文娟 宗鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期254-262,共9页
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat... Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed. 展开更多
关键词 low earth orbit satellite networks traffic classification routing algorithm quality of service traffic and topology model
在线阅读 下载PDF
An Intrusion Alarming System Based on Self-Similarity of Network Traffic 被引量:4
14
作者 YUFei ZHUMiao-liang +2 位作者 CHENYu-feng LIRen-fa XUCheng 《Wuhan University Journal of Natural Sciences》 CAS 2005年第1期169-173,共5页
Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t... Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time. 展开更多
关键词 intrusion detection SELF-SIMILARITY network traffic model: networkprocessor
在线阅读 下载PDF
Traffic dynamics on multilayer networks 被引量:4
15
作者 Jiexin Wu Cunlai Pu +1 位作者 Lunbo Li Guo Cao 《Digital Communications and Networks》 SCIE 2020年第1期58-63,共6页
Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of rece... Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of recent progress in traffic dynamics on multilayer networks.First,we introduce several typical multilayer network models.Then,we present some mainstream performance indicators,such as network capacity,average transmission time,etc.Moreover,we discuss some optimization strategies for improving the transmission performance.Finally,we provide some open issues that could be further explored in the future. 展开更多
关键词 Multilayer network traffic dynamics network model Routing strategy
在线阅读 下载PDF
Traffic chaos and its prediction based on a nonlinear car-following model 被引量:2
16
作者 Hui FU Jianmin XU Lunhui XU 《控制理论与应用(英文版)》 EI 2005年第3期302-307,共6页
This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising fie... This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series 展开更多
关键词 Car-following model CHAOS traffic prediction Radial basis function neural network (RBF NN)
在线阅读 下载PDF
Variable bit rate video traffic modeling by multiplicative multifractal model 被引量:1
17
作者 Huang Xiaodong Zhou Yuanhua Zhang Rongfu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期75-79,共5页
Multiplicative multifractal process could well modal video traffic. The multiplier distributions in the multiplicatire multifractal model for video traffic are investigated and it is found that Gaussian is not suitabl... Multiplicative multifractal process could well modal video traffic. The multiplier distributions in the multiplicatire multifractal model for video traffic are investigated and it is found that Gaussian is not suitable for describing the multipliers on the small time scales. A new statistical distribution-symmetric Pareto distribution is introduced. It is applied instead of Gaussian for the multipliers on those scales. Based on that, the algorithm is updated so that symmetric pareto distribution and Gaussian distribution are used to model video traffic but on different time scales. The simulation results demonstrate that the algorithm could model video traffic more accurately. 展开更多
关键词 multiplicative multifractal model video traffic network traffic model symmetric pareto distribution
在线阅读 下载PDF
A Chain Routing Algorithm Based on Traffic Prediction in Wireless Sensor Networks 被引量:1
18
作者 Yi Sun Lei Xu +1 位作者 Xin Wu Minxuan Shen 《Communications and Network》 2013年第3期504-507,共4页
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl... As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life. 展开更多
关键词 Wireless Sensor networks A CHAIN ROUTING Algorithm LEADER NODE traffic Prediction model
在线阅读 下载PDF
Modeling and Generating Realistic Background Traffic by Hybrid Approach 被引量:2
19
作者 QIAN Yaguan GUAN Xiaohui +1 位作者 JIANG Ming CEN Gang 《China Communications》 SCIE CSCD 2015年第10期147-157,共11页
One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alterna... One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alternative is to replace the background traffic by simplified abstract models such as fluid flows.This paper suggests a hybrid modeling approach for background traffic,which combines ON/OFF model with TCP activities.The ON/OFF model is to characterize the application activities,and the ordinary differential equations(ODEs) based on fluid flows is to describe the TCP congestion avoidance functionality.The apparent merits of this approach are(1) to accurately capture the traffic self-similarity at source level,(2) properly reflect the network dynamics,and(3) efficiently decrease the computational complexity.The experimental results show that the approach perfectly makes a proper trade-off between accuracy and complexity in background traffic simulation. 展开更多
关键词 network simulation background traffic ON/OFF models fluid flows self-similarity
在线阅读 下载PDF
End-to-End Performance Evaluation of TCP Traffic under Multi-Queuing Networks 被引量:1
20
作者 Jean Marie Garcia Mohamed El Hedi Boussada 《International Journal of Communications, Network and System Sciences》 2016年第6期219-233,共15页
While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore,... While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight. 展开更多
关键词 Flow-Level modelling Multi-Queuing network Quality of Service Streaming traffic Elastic traffic
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部