To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at...Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.展开更多
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a...Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.展开更多
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas...Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo...To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium ...The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium fluid circles.This complicates the synthesis process significantly.To tackle this issue,this study proposes a decomposed stepwise methodology to facilitate the flexible synthesis of the interplant HENs performing indirect heat integration.A decomposition strategy is proposed to divide the overall network into manageable sub-networks by dissecting the intermedium fluid circles.To address the variability in intermedium fluid temperatures,a temperature fluctuation analysis approach is developed and a heuristic rule is introduced to maintain the temperature feasibility of the intermedium fluids.To ensure adequate flexibility and cost-effectiveness of the designed networks,flexibility analysis and network retrofit steps are conducted through model-based optimization techniques.The efficacy of the method is demonstrated through two case studies,showing its potential in achieving the desired operational flexibility for inter-plant HENs.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
The method for precursor information acquisition based on acoustic emission(AE)data for jointed rock masses is of significant importance for the early warning of dynamic disasters in underground engineering.A clusteri...The method for precursor information acquisition based on acoustic emission(AE)data for jointed rock masses is of significant importance for the early warning of dynamic disasters in underground engineering.A clustering-convolutional neural network(CNN)method is proposed,which comprises a clustering component and a CNN component.A series of uniaxial compression tests were conducted on granite specimens containing a persistent sawtooth joint,with different strain rates(105e102 s1)and joint inclination angles(0e50).The results demonstrate that traditional precursory indicators based on full waveforms are effective for obtaining precursor information of the intact rock failure.However,these indicators are not universally applicable to the failure of rock masses with a single joint.The clustering-CNN method has the potential to be applied to obtain precursor information for all three failure modes(Modes I,II and III).Following the waveform clustering analysis,the effective waveforms exhibit a low main frequency,as well as high energy,ringing count,and rise time.Furthermore,the clustering method and the precursory indicators influence the acquisition of final precursor information.The Birch hierarchical clustering method and the S value precursory indicator can help to obtain more accurate results.The findings of this study may contribute to the development of warning methods for underground engineering across faults.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on...To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.展开更多
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow an...Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.展开更多
Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box test...Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box testing,fuzzy testing,model testing,and fault injection testing.A software security testing method based on a security target model is proposed.This paper provides new ideas for software security testing,better adapts to the open network environment,improves the efficiency and quality of testing,and builds a good software application environment.展开更多
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia...When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.展开更多
BACKGROUND The prevalence and severity of noncommunicable chronic diseases(NCDs)among Chinese residents have been increasing with mental health emerging as a critical challenge in disease management.AIM To examine the...BACKGROUND The prevalence and severity of noncommunicable chronic diseases(NCDs)among Chinese residents have been increasing with mental health emerging as a critical challenge in disease management.AIM To examine the interactions between depression,anxiety symptoms,and related factors,and to identify key factors in the Chinese population with NCDs.METHODS Data from the Psychology and Behavior Investigation of Chinese Residents were used in a cross-sectional survey of 6182 individuals with NCDs.This study measured depression and anxiety symptoms as well as their influencing factorsincluding social environments,individual behaviors and lifestyles,and subjective indicators.A network analysis approach was used for data assessment.RESULTS Network analysis demonstrated that several central factors(media exposure,family health,problematic internet use,suboptimal health status,intimate relationship violence,tired or little energy,and nervousness/anxious/on edge)and bridge factors(media exposure,problematic internet use,intimate partner violence,health literacy,and suboptimal health status)that significantly influenced the co-occurrence and interconnectedness of depression and anxiety symptoms.Additionally,gender,ethnicity,residency,and living status did not significantly influence the overall network strength.CONCLUSION Depression and anxiety are prevalent among the Chinese population with NCDs.Effective interventions should focus on managing key symptoms,promoting correct media use for health information,and fostering healthier family relationships.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
文摘Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.
基金supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.
基金supported by the National Natural Science Foundation of China(No.51878625)the Collaboratory for the Study of Earthquake Predictability in China Seismic Experimental Site(No.2018YFE0109700)the General Scientific Research Foundation of Shandong Earthquake Agency(No.YB2208).
文摘Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金co-supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)the Fundamental Research Funds for the Central Universities,China(No.XJSJ23164)。
文摘To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金financial support provided by the National Natural Science Foundation of China(22378045,22178045).
文摘The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium fluid circles.This complicates the synthesis process significantly.To tackle this issue,this study proposes a decomposed stepwise methodology to facilitate the flexible synthesis of the interplant HENs performing indirect heat integration.A decomposition strategy is proposed to divide the overall network into manageable sub-networks by dissecting the intermedium fluid circles.To address the variability in intermedium fluid temperatures,a temperature fluctuation analysis approach is developed and a heuristic rule is introduced to maintain the temperature feasibility of the intermedium fluids.To ensure adequate flexibility and cost-effectiveness of the designed networks,flexibility analysis and network retrofit steps are conducted through model-based optimization techniques.The efficacy of the method is demonstrated through two case studies,showing its potential in achieving the desired operational flexibility for inter-plant HENs.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
基金support from the National Natural Science Foundation of China(Grant Nos.52079134 and 51991393).
文摘The method for precursor information acquisition based on acoustic emission(AE)data for jointed rock masses is of significant importance for the early warning of dynamic disasters in underground engineering.A clustering-convolutional neural network(CNN)method is proposed,which comprises a clustering component and a CNN component.A series of uniaxial compression tests were conducted on granite specimens containing a persistent sawtooth joint,with different strain rates(105e102 s1)and joint inclination angles(0e50).The results demonstrate that traditional precursory indicators based on full waveforms are effective for obtaining precursor information of the intact rock failure.However,these indicators are not universally applicable to the failure of rock masses with a single joint.The clustering-CNN method has the potential to be applied to obtain precursor information for all three failure modes(Modes I,II and III).Following the waveform clustering analysis,the effective waveforms exhibit a low main frequency,as well as high energy,ringing count,and rise time.Furthermore,the clustering method and the precursory indicators influence the acquisition of final precursor information.The Birch hierarchical clustering method and the S value precursory indicator can help to obtain more accurate results.The findings of this study may contribute to the development of warning methods for underground engineering across faults.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.
基金The National Key Research and Development Program of China(No.2023YFC3805003)。
文摘To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
基金Funding Open Access funding enabled and organized by Projekt DEAL.When preparing this manuscript,the authors have kept the COPE guidelines on how to deal with potential acts of misconduct.The research leading to these results received funding from Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through the project SFB-TRR 75 with the project number 84292822the DFG under Germanys Excellence Strategy-EXC2075with the project number390740016.
文摘Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.
文摘Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box testing,fuzzy testing,model testing,and fault injection testing.A software security testing method based on a security target model is proposed.This paper provides new ideas for software security testing,better adapts to the open network environment,improves the efficiency and quality of testing,and builds a good software application environment.
文摘When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.
文摘BACKGROUND The prevalence and severity of noncommunicable chronic diseases(NCDs)among Chinese residents have been increasing with mental health emerging as a critical challenge in disease management.AIM To examine the interactions between depression,anxiety symptoms,and related factors,and to identify key factors in the Chinese population with NCDs.METHODS Data from the Psychology and Behavior Investigation of Chinese Residents were used in a cross-sectional survey of 6182 individuals with NCDs.This study measured depression and anxiety symptoms as well as their influencing factorsincluding social environments,individual behaviors and lifestyles,and subjective indicators.A network analysis approach was used for data assessment.RESULTS Network analysis demonstrated that several central factors(media exposure,family health,problematic internet use,suboptimal health status,intimate relationship violence,tired or little energy,and nervousness/anxious/on edge)and bridge factors(media exposure,problematic internet use,intimate partner violence,health literacy,and suboptimal health status)that significantly influenced the co-occurrence and interconnectedness of depression and anxiety symptoms.Additionally,gender,ethnicity,residency,and living status did not significantly influence the overall network strength.CONCLUSION Depression and anxiety are prevalent among the Chinese population with NCDs.Effective interventions should focus on managing key symptoms,promoting correct media use for health information,and fostering healthier family relationships.