We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com...We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.展开更多
Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial con...Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.展开更多
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles...As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.展开更多
Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is c...Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is conducted under the assumption that data is free of noise or polluted by the Gaussian noise,which lacks robustness or even fails to solve real-world tasks.This work handles this issue by proposing a probabilistic regularized ESN(PRESN)with robustness guaranteed.Specifically,we design a novel objective function for minimizing both the mean and variance of modeling error,and then a scheme is derived for getting output weights of the PRESN.Furthermore,generalization performance,robustness,and unbiased estimation abilities of the PRESN are revealed by theoretical analyses.Finally,experiments on a benchmark dataset and two real-world datasets are conducted to verify the performance of the proposed PRESN.The source code is publicly available at https://github.com/LongJinlab/probabilistic-regularized-echo-state-network.展开更多
High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a s...High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method.展开更多
Objective:Cervical disease,a type of chronic pain,can greatly impact quality of life.Traditional Chinese tuina,a form of therapeutic massage and manipulation,has been shown to be effective in relieving pain and other ...Objective:Cervical disease,a type of chronic pain,can greatly impact quality of life.Traditional Chinese tuina,a form of therapeutic massage and manipulation,has been shown to be effective in relieving pain and other symptoms in patients with chronic neck pain.This study applied functional magnetic resonance imaging (fMRI) to explore the features of the resting state network of patients with chronic neck pain caused by cervical radiculopathy,and how tuina affects the causality between intrinsic brain networks.Methods:Using Granger causality analysis,effective connectivity of brain networks of 10 patients with chronic neck pain was compared with 10 healthy control subjects.Resting state fMRI data were using magnetic resonance scanning.Cervical spondylosis symptom scores were evaluated before and after 4 weeks of tuina therapy.Independent component analysis was applied to extract the specific networks related to sensation,execution,and cognition,including sensorimotor network (SMN),visual network (VN),auditory network (AN),anterior and posterior default mode network (aDMN,pDMN),left frontoparietal network and right frontoparietal network.Results:Compared with the control group,data from the treatment group revealed two major findings:before tuina therapy,SMN had a profound influence on aDMN and AN greatly affected pDMN;however,after 4 weeks of tuina therapy,aDMN and SMN showed reversed causality.Conclusion:Chronic neck pain caused by cervical radiculopathy may influence the DMN,which plays an important role in emotion,cognition,and memory,by stimulating the sensory afferent network.Tuina not only significantly relieves pain and discomfort,but also reverses the causality between aDMN and SMN.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by...With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services.展开更多
Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor mea...Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor measurement unit (PMU) devices are also gradually applied to the distribution network. So when estimating the state of the distribution network, the above two devices need to be used. However, because the data of different measurement systems are different, it is necessary to balance this difference so that the data of different systems can be compatible to achieve the purpose of effective utilization of the estimated power distribution state. To this end, this paper starts with three aspects of data accuracy of the two measurement systems, data time section and data refresh frequency to eliminate the differences between system data, and then considers the actual situation of the three-phase asymmetry of the distribution network. The three-phase state estimation equations are constructed by the branch current method, and finally the state estimation results are solved by the weighted least square method.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based ...Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based on the second network is lOOe/0. Therefore, the second network is more motivative than the first one.展开更多
Along the way initiated by Carleo and Troyer [G. Carleo and M. Troyer, Science 355(2017) 602], we construct the neural-network quantum state of transverse-field Ising model(TFIM) by an unsupervised machine learning me...Along the way initiated by Carleo and Troyer [G. Carleo and M. Troyer, Science 355(2017) 602], we construct the neural-network quantum state of transverse-field Ising model(TFIM) by an unsupervised machine learning method. Such a wave function is a map from the spin-configuration space to the complex number field determined by an array of network parameters. To get the ground state of the system, values of the network parameters are calculated by a Stochastic Reconfiguration(SR) method. We provide for this SR method an understanding from action principle and information geometry aspects. With this quantum state, we calculate key observables of the system, the energy,correlation function, correlation length, magnetic moment, and susceptibility. As innovations, we provide a high e?ciency method and use it to calculate entanglement entropy(EE) of the system and get results consistent with previous work very well.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the...The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].展开更多
The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was trans...The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was transformed into a non-constrained optimization problem using mass conservation. Then,through one dimensional optimization and scale matrix establishment,the feasible direction of iteration was obtained,and the values of state variables could be calculated. After several iterations,the optimal estimates of state variables were worked out and state simulation of water distribution networks was achieved as a result. A program of DFP algorithm is developed with Delphi 7 for verification. By running on a designed network,which is composed of 55 nodes,94 pipes and 40 loops,it is proved that DFP algorithm can quickly get the convergence. After 36 iterations,the root mean square of all nodal head errors is reduced by 90.84% from 5.57 to 0.51 m,and the maximum error is only 1.30 m. Compared to Marquardt algorithm,the procedure of DFP algorithm is more stable,and the initial values have less influences on calculation accuracy. Therefore,DFP algorithm can be used for real-time simulation of water distribution networks.展开更多
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro...Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily.展开更多
<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservo...<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservoir topology and the output weight matrix, and adopt the ABC (Artificial Bee Colony) algorithm based on crossover and crowding strategy to optimize the parameters. Finally, the proposed method is simulated and the results show that it has stronger prediction ability for COVID-19 nonlinear time series. </div>展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11190024 and 11474331)
文摘We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
基金supported by National Natural Science Foundation of China(Nos.61374102,61433002 and 61120106009)High Education Science&Technology Fund Planning Project of Shandong Province of China(No.J14LN30)
文摘Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.
基金supported in part by the National Natural Science Foundation of China(62176109,62476115)the Fundamental Research Funds for the Central Universities(lzujbky-2023-ey07,lzujbky-2023-it14)+1 种基金the Natural Science Foundation of Gansu Province(24JRRA488)the Supercomputing Center of Lanzhou University
文摘As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.
基金supported in part by the National Natural Science Foundation of China(62176109)the CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2022-020A)+3 种基金the Natural Science Foundation of Gansu Province(21JR7RA531,22JR5RA427,22JR5RA487)the Fundamental Research Funds for the Central Universities(lzujbky-2022-kb12,lzujbky-2022-23)the Science and Technology Project of Chengguan Discrict of Lanzhou(2021-1-2)the Supercomputing Center of Lanzhou University。
文摘Recent decades have witnessed a trend that the echo state network(ESN)is widely utilized in field of time series prediction due to its powerful computational abilities.However,most of the existing research on ESN is conducted under the assumption that data is free of noise or polluted by the Gaussian noise,which lacks robustness or even fails to solve real-world tasks.This work handles this issue by proposing a probabilistic regularized ESN(PRESN)with robustness guaranteed.Specifically,we design a novel objective function for minimizing both the mean and variance of modeling error,and then a scheme is derived for getting output weights of the PRESN.Furthermore,generalization performance,robustness,and unbiased estimation abilities of the PRESN are revealed by theoretical analyses.Finally,experiments on a benchmark dataset and two real-world datasets are conducted to verify the performance of the proposed PRESN.The source code is publicly available at https://github.com/LongJinlab/probabilistic-regularized-echo-state-network.
基金Sponsored by Korea Science and Engineering Foundation(KOSEF)Funded by Korea Government(MEST)(2010-0022521)
文摘High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method.
基金This research was supported by the Young Teachers Foundation of Beijing University of Chinese Medicine,No.2013-JYBZZ-JS-047The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.
文摘Objective:Cervical disease,a type of chronic pain,can greatly impact quality of life.Traditional Chinese tuina,a form of therapeutic massage and manipulation,has been shown to be effective in relieving pain and other symptoms in patients with chronic neck pain.This study applied functional magnetic resonance imaging (fMRI) to explore the features of the resting state network of patients with chronic neck pain caused by cervical radiculopathy,and how tuina affects the causality between intrinsic brain networks.Methods:Using Granger causality analysis,effective connectivity of brain networks of 10 patients with chronic neck pain was compared with 10 healthy control subjects.Resting state fMRI data were using magnetic resonance scanning.Cervical spondylosis symptom scores were evaluated before and after 4 weeks of tuina therapy.Independent component analysis was applied to extract the specific networks related to sensation,execution,and cognition,including sensorimotor network (SMN),visual network (VN),auditory network (AN),anterior and posterior default mode network (aDMN,pDMN),left frontoparietal network and right frontoparietal network.Results:Compared with the control group,data from the treatment group revealed two major findings:before tuina therapy,SMN had a profound influence on aDMN and AN greatly affected pDMN;however,after 4 weeks of tuina therapy,aDMN and SMN showed reversed causality.Conclusion:Chronic neck pain caused by cervical radiculopathy may influence the DMN,which plays an important role in emotion,cognition,and memory,by stimulating the sensory afferent network.Tuina not only significantly relieves pain and discomfort,but also reverses the causality between aDMN and SMN.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Research on the Communication Architecture and Hardware-In-the-Loop Simu-lation of Real-Time Wide-Area Stability Control for Electric Power System”
文摘With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services.
文摘Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor measurement unit (PMU) devices are also gradually applied to the distribution network. So when estimating the state of the distribution network, the above two devices need to be used. However, because the data of different measurement systems are different, it is necessary to balance this difference so that the data of different systems can be compatible to achieve the purpose of effective utilization of the estimated power distribution state. To this end, this paper starts with three aspects of data accuracy of the two measurement systems, data time section and data refresh frequency to eliminate the differences between system data, and then considers the actual situation of the three-phase asymmetry of the distribution network. The three-phase state estimation equations are constructed by the branch current method, and finally the state estimation results are solved by the weighted least square method.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
文摘Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based on the second network is lOOe/0. Therefore, the second network is more motivative than the first one.
基金Supported by the Natural Science Foundation of China under Grant No.11875082
文摘Along the way initiated by Carleo and Troyer [G. Carleo and M. Troyer, Science 355(2017) 602], we construct the neural-network quantum state of transverse-field Ising model(TFIM) by an unsupervised machine learning method. Such a wave function is a map from the spin-configuration space to the complex number field determined by an array of network parameters. To get the ground state of the system, values of the network parameters are calculated by a Stochastic Reconfiguration(SR) method. We provide for this SR method an understanding from action principle and information geometry aspects. With this quantum state, we calculate key observables of the system, the energy,correlation function, correlation length, magnetic moment, and susceptibility. As innovations, we provide a high e?ciency method and use it to calculate entanglement entropy(EE) of the system and get results consistent with previous work very well.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金Supported by the National Natural Science Foundation of China(Nos.12001480,11871318)the Applied Basic Research Program of Shanxi Province(No.201901D211461)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0554)the Excellent Doctoral Research Project of Shanxi Province(No.QZX-2020001)the PhD Start-up Project of Yuncheng University(No.YQ-2019021)。
文摘The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].
基金Project(IRT0853) supported by Changjiang Scholars and Innovative Research Team in UniversityProject(DB03086) supported by Talents Fund of Xi’an University of Architecture and TechnologyProject(50978213) supported by National Natural Science Foundation
文摘The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was transformed into a non-constrained optimization problem using mass conservation. Then,through one dimensional optimization and scale matrix establishment,the feasible direction of iteration was obtained,and the values of state variables could be calculated. After several iterations,the optimal estimates of state variables were worked out and state simulation of water distribution networks was achieved as a result. A program of DFP algorithm is developed with Delphi 7 for verification. By running on a designed network,which is composed of 55 nodes,94 pipes and 40 loops,it is proved that DFP algorithm can quickly get the convergence. After 36 iterations,the root mean square of all nodal head errors is reduced by 90.84% from 5.57 to 0.51 m,and the maximum error is only 1.30 m. Compared to Marquardt algorithm,the procedure of DFP algorithm is more stable,and the initial values have less influences on calculation accuracy. Therefore,DFP algorithm can be used for real-time simulation of water distribution networks.
基金supported by the National Natural Science Foundation of China(No.72073041)Open Foundation for the University Innovation Platform in Hunan Province(No.18K103)+2 种基金2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open Project(Nos.20181901CRP03,20181901CRP04,20181901CRP05)2020 Hunan Provincial Higher Education Teaching Reform Research Project(Nos.HNJG-2020-1130,HNJG-2020-1124)2020 General Project of Hunan Social Science Fund(No.20B16).
文摘Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily.
文摘<div style="text-align:justify;"> This paper proposes a prediction method based on improved Echo State Network for COVID-19 nonlinear time series, which improves the Echo State Network from the reservoir topology and the output weight matrix, and adopt the ABC (Artificial Bee Colony) algorithm based on crossover and crowding strategy to optimize the parameters. Finally, the proposed method is simulated and the results show that it has stronger prediction ability for COVID-19 nonlinear time series. </div>