In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (H...This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.展开更多
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im...Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.展开更多
Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize t...Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize the high network capacity by appropriate multi- path routing algorithms. As flow-level path splitting may lead to trafl'ic imbalance between paths due to flow- size difference, packet-level path splitting attracts more attention lately, which spreads packets from flows into multiple available paths and significantly improves link utilizations. However, it may cause packet reordering, confusing the TCP congestion control algorithm and lowering the throughput of flows. In this paper, we design a novel packetlevel multi-path routing scheme called SOPA, which leverag- es OpenFlow to perform packet-level path splitting in a round- robin fashion, and hence significantly mitigates the packet reordering problem and improves the network throughput. Moreover, SOPA leverages the topological feature of data center networks to encode a very small number of switches along the path into the packet header, resulting in very light overhead. Compared with random packet spraying (RPS), Hedera and equal-cost multi-path routing (ECMP), our simulations demonstrate that SOPA achieves 29.87%, 50.41% and 77.74% higher network throughput respectively under permutation workload, and reduces average data transfer completion time by 53.65%, 343.31% and 348.25% respectively under production workload.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
文摘This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.
基金the Artificial Intelligence Key Laboratory of Sichuan Province(Nos.2019RYJ05)National Natural Science Foundation of China(Nos.61971107).
文摘Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.
基金supported by the National Basic Research Program of China(973 program)under Grant No.2014CB347800 and No.2012CB315803the National High-Tech R&D Program of China(863 program)under Grant No.2013AA013303+1 种基金the Natural Science Foundation of China under Grant No.61170291,No.61133006,and No.61161140454ZTE IndustryAcademia-Research Cooperation Funds
文摘Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize the high network capacity by appropriate multi- path routing algorithms. As flow-level path splitting may lead to trafl'ic imbalance between paths due to flow- size difference, packet-level path splitting attracts more attention lately, which spreads packets from flows into multiple available paths and significantly improves link utilizations. However, it may cause packet reordering, confusing the TCP congestion control algorithm and lowering the throughput of flows. In this paper, we design a novel packetlevel multi-path routing scheme called SOPA, which leverag- es OpenFlow to perform packet-level path splitting in a round- robin fashion, and hence significantly mitigates the packet reordering problem and improves the network throughput. Moreover, SOPA leverages the topological feature of data center networks to encode a very small number of switches along the path into the packet header, resulting in very light overhead. Compared with random packet spraying (RPS), Hedera and equal-cost multi-path routing (ECMP), our simulations demonstrate that SOPA achieves 29.87%, 50.41% and 77.74% higher network throughput respectively under permutation workload, and reduces average data transfer completion time by 53.65%, 343.31% and 348.25% respectively under production workload.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
文摘针对用户在存在窃听者的复杂通信环境进行中继通信的安全问题,提出了一种多无人机辅助的中继通信网络为用户提供通信服务。通过基于Q混合网络(Q-mixing network,QMIX)的多智能体深度强化学习(multi-agent reinforcement learning,MRAL)算法优化无人机轨迹与功率分配,在信息安全敏感度较低用户(次要用户)最低速率得到保障的情况下,提高信息安全敏感较高用户(主要用户)的安全和速率。仿真结果表明,算法相较于双层深度Q网络(double deep Q-network,Double DQN)和对偶深度Q网络(dueling deep Q-network,Dueling DQN),累积奖励分别提高了大约15.5%和1.26%;模型的速率分割多址技术相较于空分多址和非正交多址技术,在系统整体性能和信息安全保障方面都具有显著优势,为多用户通信场景下的安全高效通信提供了更优解决方案。