期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
A generalized synthesis load model considering network parameters and allvanadium redox flow battery 被引量:3
1
作者 L Zhou Z W Peng +2 位作者 C R Deng X Z Qi P Q Li 《Protection and Control of Modern Power Systems》 2018年第1期324-336,共13页
The simulation precision of the classic load model(CLM)is affected by the increasing proportion of installed energy storage capacity in the grid.This paper studies the all-vanadium redox flow battery(VRB)and proposes ... The simulation precision of the classic load model(CLM)is affected by the increasing proportion of installed energy storage capacity in the grid.This paper studies the all-vanadium redox flow battery(VRB)and proposes an equivalent model based on the measurement-based load modeling method,which can simulate the maximum output of the VRB energy storage system and fit the external characteristic of the system precisely in the occurrence of large disturbance and continuous small disturbance.The equivalent model is connected to CLM to form a generalized synthesis load model(GSLM),which considers the parameters of distribution network and reactive power compensation.Compared with CLM,GSLM has better structures and can describe the load characteristics of distribution network with energy storage system more precisely.Simulation results validate the effectiveness and good parameter stability of GSLM,and show that the higher the proportion of energy storage in the grid is the better description ability GSLM has. 展开更多
关键词 All-vanadium redox flow battery Classic load model network parameter parameter identification Reactive compensation
在线阅读 下载PDF
Aircraft parameter estimation using a stacked long short-term memory network and Levenberg-Marquardt method
2
作者 Zhe HUI Yinan KONG +1 位作者 Weigang YAO Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期123-136,共14页
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo... To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results. 展开更多
关键词 parameter estimation LSTM network model LM method Aerodynamic parameters Flight data Aircraft dynamics modeling network prediction capability network parameters
原文传递
A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China 被引量:1
3
作者 YU Fang-wei PENG Xiong-zhi SU Li-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1739-1750,共12页
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located... Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides. 展开更多
关键词 Back-propagation neural network Displacement back analysis Geomechanical parameters Landslide Numerical analysis Uniform design Xigeda formation
原文传递
Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural Network Method 被引量:1
4
作者 Xueye WANG and Huang SONG (Department of Chemistry, Xiangtan University, Xiangtan 411105, China) Guanzhou QIU and Dianzuo WANG (Department of Mineral Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期435-438,共4页
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu... Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides. 展开更多
关键词 Prediction of Superconductivity for Oxides Based on Structural parameters and Artificial Neural network Method
在线阅读 下载PDF
PARAMETERS INVERSION OF FLUID-SATURATED POROUS MEDIA BASED ON NEURAL NETWORKS
5
作者 Wei Peijun Zhang Zimao Han Hua 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期342-349,共8页
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth... The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method. 展开更多
关键词 fluid-saturated porous media parameter inversion neural networks boundary elements
在线阅读 下载PDF
Improved Implementation and Evaluation of Wireless Sensor Networks in Intelligent Building 被引量:3
6
作者 段俊奇 张思东 郑涛 《China Communications》 SCIE CSCD 2011年第8期64-71,共8页
A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital para... A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building. 展开更多
关键词 wireless sensor networks deployment strategy network parameters routing protocol intelligent building
在线阅读 下载PDF
PARAMETER COORDINATION AND ROBUST OPTIMIZATION FOR MULTIDISCIPLINARY DESIGN
7
作者 HU Jie PENG Yinghong XIONG Guangleng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期368-372,共5页
A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimizati... A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective. 展开更多
关键词 Constraints network parameter coordination Robust design Multidisciplinary design
在线阅读 下载PDF
Geomorphologic patterns of dune networks in the Tengger Desert,China 被引量:5
8
作者 WEN Qing DONG Zhibao 《Journal of Arid Land》 SCIE CSCD 2016年第5期660-669,共10页
Dune networks are widely distributed in the world's deserts,which include primary ridges and secondary ridges.However,they have not been sufficiently studied in a systematic manner and their origins and spatial and m... Dune networks are widely distributed in the world's deserts,which include primary ridges and secondary ridges.However,they have not been sufficiently studied in a systematic manner and their origins and spatial and morphological characteristics remain unclear.To provide information on the geomorphology of dune networks,we analyze the software geomorphologic patterns of the dune networks in China's Tengger Desert using matrix and laboratory to process remote-sensing images.Based on analysis of image features and their layout in a topographic map,we identify two types of dune networks (square and rectangular dune networks) with different size and morphological structures in the Tengger Desert.Four important geomorphic pattern parameters,ridge length,spacing,orientation and defect density,are analyzed.The length of primary ridges of dune networks decreases from northwest of the desert to the southeast,resulting an increasing spacing and a transition from rectangular dune networks to square dune networks.Wind regime and sediment supply are responsible for the variation in pattern parameters.We use the spacing and defect density data to estimate the construction time of dune networks and found that the dune networks in the Tengger Desert formed since about 1.3 ka BP. 展开更多
关键词 aeolian geomorphology dune networks geomorphological parameters geomorphic pattern analysis Tengger Desert
在线阅读 下载PDF
Stability of multiple fans in mine ventilation networks 被引量:6
9
作者 El-Nagdy K.A. 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期558-560,共3页
In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantit... In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantities associated with each fan in the network.Accordingly,each fan in a multiple-fan system has its own mine characteristic curve,or a subsystem curve.Under some consideration,the conventional concept of a mine characteristic curve of a single-fan system can be directly extended to that of a particular fan within a multiple-fan system.In this paper the mutual effect of the fans on each other and their effect on the stability of the ventilation network were investigated by Hardy Cross algorithm combined with a switching-parameters technique.To show the validity and reliability of this algorithm,the stability of the ventilation system of Abu-Tartur Mine(one of the largest underground mine in Egypt)has been studied. 展开更多
关键词 Mine ventilation Multiple fan ventilated network Hardy Cross algorithm Switching parameters technique Abu-Tartur Mine
在线阅读 下载PDF
SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK 被引量:1
10
作者 ZHOU Xiong WANG Huaqing +1 位作者 CHEN Peng TANG Yike 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期50-54,共5页
A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectivel... A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper. 展开更多
关键词 Sequential diagnosis Fuzzy neural network Symptom parameter Centrifugal pump Rotating machinery
在线阅读 下载PDF
The review and development of a modern GNSS network and datum in Uzbekistan 被引量:1
11
作者 Dilbarkhon Fazilova 《Geodesy and Geodynamics》 2017年第3期187-192,共6页
This study is focused on the discussion of a modern GNSS network and datum in Uzbekistan. Considering the significance difference (up to 200 m) in positions of the local ellipsoidal datum and the global datum, the p... This study is focused on the discussion of a modern GNSS network and datum in Uzbekistan. Considering the significance difference (up to 200 m) in positions of the local ellipsoidal datum and the global datum, the precise transformation parameters between national geodetic datum CS-42, and the World Geodetic System 1984 (WGS84) global datum used by the GPS is estimated. This study aims to evaluate the ac- curacy of the currently used transformation parameters from different sources in the region, and give preliminary recommendations for using these sets also. The differences between transformed, original and WGS-84 coordinates were calculated and evaluated. On the basis of this difference, different zones for determination of transformation parameters have been proposed.This study is focused on the discussion of a modern GNSS network and datum in Uzbekistan. Considering the significance difference (up to 200 m) in positions of the local ellipsoidal datum and the global datum, the precise transformation parameters between national geodetic datum CS-42, and the World Geodetic System 1984 (WGS84) global datum used by the GPS is estimated. This study aims to evaluate the accuracy of the currently used transformation parameters from different sources in the region, and give preliminary recommendations for using these sets also. The differences between transformed, original and WGS-84 coordinates were calculated and evaluated. On the basis of this difference, different zones for determination of transformation parameters have been proposed. 展开更多
关键词 network designLocal datumTransformation parameter
原文传递
基于量子卷积神经网络的图像分类研究
12
作者 袁素真 邱婷婷 +2 位作者 邓达 夏书银 乔治钦 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第5期748-757,共10页
为了解决经典神经网络在数据规模爆炸式增长情况下出现的算力瓶颈问题,探索基于量子计算的量子卷积神经网络(quantum convolutional neural network,QCNN)成为了研究热点。基于含噪中规模量子(noisy intermediate-scale quantum,NISQ)... 为了解决经典神经网络在数据规模爆炸式增长情况下出现的算力瓶颈问题,探索基于量子计算的量子卷积神经网络(quantum convolutional neural network,QCNN)成为了研究热点。基于含噪中规模量子(noisy intermediate-scale quantum,NISQ)设备所能提供的有限资源,构建用于图像分类的量子卷积神经网络。采用角度编码,基于数据重载分类器设计了卷积层,构建四量子比特的池化层;设计了两种结构的量子全连接层对图像进行分类,并分析了其结构对QCNN分类性能的影响。仿真实验表明,提出的QCNN模型在二分类任务上具有更高的分类精度和更好的泛化性能,最高分类精度为100.00%,最低为94.55%,平均达到97.29%;提高了模型的线路深度,可以使得模型在四分类任务中的分类精度超过90%。 展开更多
关键词 图像分类 卷积神经网络 参数化量子线路 量子卷积神经网络
在线阅读 下载PDF
Influence of Vertical Eddy Diffusivity Parameterization on Daily and Monthly Mean Concentrations of O3 and NOy 被引量:2
13
作者 安俊岭 程新金 +1 位作者 屈玉 陈勇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第4期573-580,共8页
Two parameterization schemes for vertical eddy diffusivity were utilized to investigate their impacts on both the daily and monthly mean concentrations of ozone and NOy, which are the major fractions of the sum of all... Two parameterization schemes for vertical eddy diffusivity were utilized to investigate their impacts on both the daily and monthly mean concentrations of ozone and NOy, which are the major fractions of the sum of all reactive nitrogen species, i.e., NOy=NO+NO2+HNO3+PAN. Simulations indicate that great changes in the vertical diffusivity usually occur within the planetary boundary layer (PBL). Daily and monthly mean concentrations of NOy are much more sensitive to changes in the vertical diffusivity than those of ozone and ozone and NOy levels only at or in (relatively) clean sites and areas, where long-range transport plays a crucial role, display roughly equivalent sensitivity. The results strongly suggest that a widely-accepted parameterization scheme be selected and the refinement of the model's vertical resolution in the PBL be required, even for regional and long-term studies, and ozone only being examined in an effort to judge the model's performance be unreliable, and NOy be included for model evaluations. 展开更多
关键词 Planetary boundary layer vertical eddy diffusivity parameterization NOY O3 Acid Deposition and Monitoring network in East Asia (EANET)
在线阅读 下载PDF
FBFN-based adaptive repetitive control of nonlinearly parameterized systems
14
作者 Wenli Sun Hong Cai Fu Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1003-1010,共8页
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes... An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method. 展开更多
关键词 adaptive control nonlinear parameterization repetitive control fuzzy basis function network (FBFN) permanentmagnet linear synchronous motor (PMLSM)
在线阅读 下载PDF
基于深度神经网络的超声速民机机翼结构设计
15
作者 牛芳淦 马文圆 +2 位作者 杨超 王宇 尹海莲 《机械强度》 北大核心 2025年第4期122-130,共9页
目前对超声速民机机翼的研究主要侧重于低声爆设计技术和超声速减阻技术,针对机翼结构设计的研究相对较少。因此,提出了一种面向超声速民机初步设计阶段机翼结构设计的多级优化方法,包括机翼结构布局参数化建模、结构尺寸优化有限元模... 目前对超声速民机机翼的研究主要侧重于低声爆设计技术和超声速减阻技术,针对机翼结构设计的研究相对较少。因此,提出了一种面向超声速民机初步设计阶段机翼结构设计的多级优化方法,包括机翼结构布局参数化建模、结构尺寸优化有限元模型的自动生成、深度神经网络代理模型的搭建与训练,以及基于深度神经网络代理模型进行优化求解。分析结果表明,提出的优化策略能够对超声速民机机翼结构进行良好的快速设计,深度神经网络模型相比于传统代理模型具有更高的预测精度,提高了机翼结构初步设计的效率。 展开更多
关键词 超声速民机 参数化 深度神经网络 代理模型 结构设计
在线阅读 下载PDF
结合多尺度大核卷积的红外图像人体检测算法
16
作者 邵煜潇 鲁涛 +2 位作者 王震宇 彭勇杰 姚巍 《智能系统学报》 北大核心 2025年第4期787-799,共13页
针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(... 针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(re-parameterization multi-scale large kernel convolution)。该网络通过空间和通道重构注意力模块,将注意值集中到对检测任务更重要的区域。通过Sobel算子强化边缘特征,提高对不同姿态人体的检测能力。RML-YOLO的有效性在自制数据集上得到验证。在只有1.8×10~6可学习参数的情况下,模型的AP50和AP50-75分别达到了91.2%和87.3%,与参数量相近的YOLOv8-n相比分别提高了4.4%和5.3%。结果表明,RML-YOLO显著提高了利用红外图像进行废墟环境下人体检测的精度。 展开更多
关键词 红外图像 目标检测 重构注意力 多尺度特征 大核卷积 卷积神经网络 特征提取 重参数化
在线阅读 下载PDF
基于轻量级网络设计的咖啡豆烘焙状态识别研究
17
作者 杜远飞 郭仕豪 +1 位作者 吴传宇 闫轩旭 《中国农机化学报》 北大核心 2025年第9期212-219,共8页
针对当前咖啡豆烘焙状态识别耗时耗力的问题,提出一种基于局部注意力增强的轻量化网络Rep—FdNet,实现对烘焙程度的实时监控。该网络采用一种全新的分频模块,增强网络对于局部特征的关注,有助于提高网络区分高频和低频信息的能力。在推... 针对当前咖啡豆烘焙状态识别耗时耗力的问题,提出一种基于局部注意力增强的轻量化网络Rep—FdNet,实现对烘焙程度的实时监控。该网络采用一种全新的分频模块,增强网络对于局部特征的关注,有助于提高网络区分高频和低频信息的能力。在推理阶段采用重参数化方法将三分支结构融合成单路结构,在保证网络准确率的同时,加快网络推理速度并减少内存占用。试验结果表明:所提出的Rep—FdNet在分类准确率上达到98.2%,满足分类的需求;在计算量、参数量以及内存占用上分别仅有25.80 M、1.02 M和2.75 MB,有效解决计算资源有限的问题;在推理速度上达到124.99帧/s,满足工业应用上实时分类的要求。该轻量化网络Rep—FdNet能够识别咖啡豆烘焙程度,降低咖啡烘焙的人工成本和操作难度。 展开更多
关键词 咖啡豆烘焙 深度学习 轻量化网络 图像分频 重参数化
在线阅读 下载PDF
基于改进YOLOv8的水下目标检测算法 被引量:1
18
作者 梁秀满 张腾 +3 位作者 于海峰 刘振东 梁卫征 刘德卿 《计算机工程与设计》 北大核心 2025年第9期2599-2607,共9页
针对水下环境可见度低、生物重叠遮挡等干扰水下目标检测的问题,提出一种基于改进YOLOv8的水下目标检测算法。针对图像模糊和目标重叠问题,引入了感受野机制卷积,并对C2f重新设计,使模型根据输入特征动态调节感受野权重,解决检测过程中... 针对水下环境可见度低、生物重叠遮挡等干扰水下目标检测的问题,提出一种基于改进YOLOv8的水下目标检测算法。针对图像模糊和目标重叠问题,引入了感受野机制卷积,并对C2f重新设计,使模型根据输入特征动态调节感受野权重,解决检测过程中参数共享的问题;利用重参数化泛化特征金字塔网络对颈部重新设计,增强了特征交互能力,并优化了推理结构;在颈部引入了改善目标遮挡的分离增强注意力机制,增强对遮挡目标的检测能力。实验结果表明,改进后的YOLOv8算法检测精度mAP50达到了84.5%,该结果表明所提模型可以满足水下目标检测需求。 展开更多
关键词 深度学习 水下目标检测 YOLOv8 卷积神经网络 注意力机制 结构重参数化 分类回归
在线阅读 下载PDF
国产化软件在铁路接触网设计中的应用研究
19
作者 鲁苹 刘红良 +3 位作者 乔立贤 于胜利 张荣娜 陈延君 《土木建筑工程信息技术》 2025年第3期58-62,共5页
BIM技术在高铁接触网设计阶段的应用,尤其是在解决接触网建模、设计协同与信息管理等方面面临诸多挑战。本文通过使用国产BIM软件Railworks,结合参数化建模方法,构建了高精度的接触网三维模型,实现了设计的精细化和高效协同。通过深入... BIM技术在高铁接触网设计阶段的应用,尤其是在解决接触网建模、设计协同与信息管理等方面面临诸多挑战。本文通过使用国产BIM软件Railworks,结合参数化建模方法,构建了高精度的接触网三维模型,实现了设计的精细化和高效协同。通过深入分析和优化接触网各阶段的建模流程,验证了BIM技术能够有效提高设计效率,缩短建模周期,且在提高信息协同和精准施工指导方面具有显著优势,利用数据标准化和模型互操作性解决了当前设计中的信息传递瓶颈。本项目的成功应用显著提升了设计效率约50%,并提供了全生命期的管理支持。BIM技术在高铁接触网领域的广泛应用不仅优化了设计过程,还为高铁建设提供了更加科学、精准和高效的技术支持,具有参考价值与推广意义。 展开更多
关键词 铁路 Railworks 建模方法 BIM技术 接触网 参数化建模
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
20
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部