To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo...To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.展开更多
The simulation precision of the classic load model(CLM)is affected by the increasing proportion of installed energy storage capacity in the grid.This paper studies the all-vanadium redox flow battery(VRB)and proposes ...The simulation precision of the classic load model(CLM)is affected by the increasing proportion of installed energy storage capacity in the grid.This paper studies the all-vanadium redox flow battery(VRB)and proposes an equivalent model based on the measurement-based load modeling method,which can simulate the maximum output of the VRB energy storage system and fit the external characteristic of the system precisely in the occurrence of large disturbance and continuous small disturbance.The equivalent model is connected to CLM to form a generalized synthesis load model(GSLM),which considers the parameters of distribution network and reactive power compensation.Compared with CLM,GSLM has better structures and can describe the load characteristics of distribution network with energy storage system more precisely.Simulation results validate the effectiveness and good parameter stability of GSLM,and show that the higher the proportion of energy storage in the grid is the better description ability GSLM has.展开更多
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu...Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.展开更多
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth...The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.展开更多
A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital para...A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.展开更多
针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(...针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(re-parameterization multi-scale large kernel convolution)。该网络通过空间和通道重构注意力模块,将注意值集中到对检测任务更重要的区域。通过Sobel算子强化边缘特征,提高对不同姿态人体的检测能力。RML-YOLO的有效性在自制数据集上得到验证。在只有1.8×10~6可学习参数的情况下,模型的AP50和AP50-75分别达到了91.2%和87.3%,与参数量相近的YOLOv8-n相比分别提高了4.4%和5.3%。结果表明,RML-YOLO显著提高了利用红外图像进行废墟环境下人体检测的精度。展开更多
A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimizati...A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.展开更多
基金co-supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)the Fundamental Research Funds for the Central Universities,China(No.XJSJ23164)。
文摘To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.
基金This work was supported in part by the national natural science foundation of China(51677059)Guangdong Power Grid Company Limited Project.(GDKJXM00000025)。
文摘The simulation precision of the classic load model(CLM)is affected by the increasing proportion of installed energy storage capacity in the grid.This paper studies the all-vanadium redox flow battery(VRB)and proposes an equivalent model based on the measurement-based load modeling method,which can simulate the maximum output of the VRB energy storage system and fit the external characteristic of the system precisely in the occurrence of large disturbance and continuous small disturbance.The equivalent model is connected to CLM to form a generalized synthesis load model(GSLM),which considers the parameters of distribution network and reactive power compensation.Compared with CLM,GSLM has better structures and can describe the load characteristics of distribution network with energy storage system more precisely.Simulation results validate the effectiveness and good parameter stability of GSLM,and show that the higher the proportion of energy storage in the grid is the better description ability GSLM has.
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.
文摘Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.
基金the National Natural Science Foundation of China (Nos.19872002 and 10272003)Climbing Foundation of Northern Jiaotong University
文摘The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.
基金supported by National Natural Science Foundation of China under Grant No.60802016, 60972010by China Next Generation Internet (CNGI) project under Grant No.CNGI-09-03-05
文摘A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.
文摘针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(re-parameterization multi-scale large kernel convolution)。该网络通过空间和通道重构注意力模块,将注意值集中到对检测任务更重要的区域。通过Sobel算子强化边缘特征,提高对不同姿态人体的检测能力。RML-YOLO的有效性在自制数据集上得到验证。在只有1.8×10~6可学习参数的情况下,模型的AP50和AP50-75分别达到了91.2%和87.3%,与参数量相近的YOLOv8-n相比分别提高了4.4%和5.3%。结果表明,RML-YOLO显著提高了利用红外图像进行废墟环境下人体检测的精度。
基金This project is supported by National Natural Science Foundation of China (No.60304015, No.50575142).
文摘A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.