Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been...Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.展开更多
Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neur...Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neural Networks(ANN).Unlike conventional ANNs,which process static images without fully capturing the inherent temporal dynamics,our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification,integrating an encoding method to convert static RGB plant images into temporally encoded spike trains.Additionally,while Bernoulli trials and standard deep learning architectures likeConvolutionalNeuralNetworks(CNNs)and Fully Connected Neural Networks(FCNNs)have been used extensively,our work is the first to integrate these trials within an SNN framework specifically for agricultural applications.This integration not only refines spike regulation and reduces computational overhead by 30%but also delivers superior accuracy(93.4%)in plant disease classification,marking a significant advancement in precision agriculture that has not been previously explored.Our approach uniquely transforms static plant leaf images into time-dependent representations,leveraging SNNs’intrinsic temporal processing capabilities.This approach aligns with the inherent ability of SNNs to capture dynamic,timedependent patterns,making them more suitable for detecting disease activations in plants than conventional ANNs that treat inputs as static entities.Unlike prior works,our hybrid encoding scheme dynamically adapts to pixel intensity variations(via threshold),enabling robust feature extraction under diverse agricultural conditions.The dual-stage preprocessing customizes the SNN’s behavior in two ways:the encoding threshold is derived from pixel distributions in diseased regions,and Bernoulli trials selectively reduce redundant spikes to ensure energy efficiency on low-power devices.We used a comprehensive dataset of 87,000 RGB images of plant leaves,which included 38 distinct classes of healthy and unhealthy leaves.To train and evaluate three distinct neural network architectures,DeepSNN,SimpleCNN,and SimpleFCNN,the dataset was rigorously preprocessed,including stochastic rotation,horizontal flip,resizing,and normalization.Moreover,by integrating Bernoulli trials to regulate spike generation,ourmethod focuses on extracting themost relevant featureswhile reducingcomputational overhead.Using a comprehensivedatasetof87,000RGB images across 38 classes,we rigorously preprocessed the data and evaluated three architectures:DeepSNN,SimpleCNN,and SimpleFCNN.The results demonstrate that DeepSNN outperforms the other models,achieving superior accuracy,efficient feature extraction,and robust spike management,thereby establishing the potential of SNNs for real-time,energy-efficient agricultural applications.展开更多
The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communicati...The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in comm...Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks.展开更多
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a...A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.展开更多
To address the recycling challenges posed by the global peak of wind turbine blade retirement,this study aims to establish a decision-making model for reverse logistics modes of decommissioned blades,resolving the mul...To address the recycling challenges posed by the global peak of wind turbine blade retirement,this study aims to establish a decision-making model for reverse logistics modes of decommissioned blades,resolving the multi-agent collaborative optimization problem under ultra-high logistics cost constraints.Based on the characteristics of centralized sourcing and determinable elements in blade reverse logistics,we developed three models dominated by wind power equipment manufacturers,operators,and third-party enterprises,respectively.The research analyzes influencing factors on reverse logistics mode selection and proposes a threshold decision mechanism for mode selection.Key findings reveal:technological strength serves as the core driver for manufacturer-dominated models;channel efficiency determines the applicability of operator-led models;insufficient economies of scale may hinder third-party model development.This study provides decision-making foundations for the resource utilization of decommissioned blades.展开更多
Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focus...Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model.展开更多
我校公共课部英语教研室高雅琳老师撰写的学术论文"Genetically optimized neural network for college English teaching evaluation method"在SSCI期刊《Education and Information Technologies》上发表,被SSCI检索收录,...我校公共课部英语教研室高雅琳老师撰写的学术论文"Genetically optimized neural network for college English teaching evaluation method"在SSCI期刊《Education and Information Technologies》上发表,被SSCI检索收录,该期刊在2025年中国科学院SCI期刊分区表属于2区(教育学大类),IF4.8,我校为独立完成单位。展开更多
The increasing global demand for energy,coupled with concerns about environmental sustainability,has underscored the need for a transition toward renewable energy sources.A well-structured teaching program under the f...The increasing global demand for energy,coupled with concerns about environmental sustainability,has underscored the need for a transition toward renewable energy sources.A well-structured teaching program under the framework of sustainable development in renewable energy seeks to give students the information,abilities,and critical thinking needed to solve energy-related problems sustainably.This research proposes AI-powered personalized learning,innovative real-time integration of diverse data,and adaptive teaching strategies to enhance student understanding regarding renewable energy concepts.The sheep flock-optimized innovative recurrent neural network(SFO-IRNN)will recommend relevant topics and resources based on students’performance.Renewable energy teaching data from assessmethments are combined with real-time IoT-based renewable energy data.This dataset contains renewable energy education using AI-driven teaching methods and internet-based learning.The data was preprocessed by handling missing values and min-max scaling.The data features were extracted using Fourier Transform(FT).Further application of 10-fold cross-validation will increase the reliability of the model as it can evaluate its performance metrics like accuracy,F1-score,recall,and precision on different subsets of student data,which improves its robustness and prevents overfitting.The findings showed that the proposed method is significantly better,which ensures that the students have a deeper theoretical and practical understanding of renewable energy technologies.In addition,integrating real-time IoT data from renewable energy sources gives students a chance to do live simulations and problems that would enhance analytical thinking and hands-on learning.The research shows that AI provides context-aware guidance on sustainable energy infrastructure,enhancing interactive and personalized learning.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how...The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.展开更多
The purpose of this paper is to identify the critical road sections and intersections in a road network which have great influence on the normal transport functions of the road network and to optimize the road network...The purpose of this paper is to identify the critical road sections and intersections in a road network which have great influence on the normal transport functions of the road network and to optimize the road network structure by reducing its vulnerability. In this paper, the framework of road network structural vulnerability measurement and improvement model is proposed. The network efficiency model is used to define road network structural vulnerability. Shanghai freeway network is analyzed based on this model. We find that using this model the critical components of the road network can be identified. Two methods which are increasing connections and rewiring are proposed to optimize the road network structural vulnerability and the results can be used to reduce the network vulnerability. The measurement method that we put forward for structure vulnerability is useful and important to optimize road network structure.展开更多
Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has ...Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.展开更多
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions...Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general effic...In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.展开更多
In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation pr...In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.展开更多
文摘Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neural Networks(ANN).Unlike conventional ANNs,which process static images without fully capturing the inherent temporal dynamics,our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification,integrating an encoding method to convert static RGB plant images into temporally encoded spike trains.Additionally,while Bernoulli trials and standard deep learning architectures likeConvolutionalNeuralNetworks(CNNs)and Fully Connected Neural Networks(FCNNs)have been used extensively,our work is the first to integrate these trials within an SNN framework specifically for agricultural applications.This integration not only refines spike regulation and reduces computational overhead by 30%but also delivers superior accuracy(93.4%)in plant disease classification,marking a significant advancement in precision agriculture that has not been previously explored.Our approach uniquely transforms static plant leaf images into time-dependent representations,leveraging SNNs’intrinsic temporal processing capabilities.This approach aligns with the inherent ability of SNNs to capture dynamic,timedependent patterns,making them more suitable for detecting disease activations in plants than conventional ANNs that treat inputs as static entities.Unlike prior works,our hybrid encoding scheme dynamically adapts to pixel intensity variations(via threshold),enabling robust feature extraction under diverse agricultural conditions.The dual-stage preprocessing customizes the SNN’s behavior in two ways:the encoding threshold is derived from pixel distributions in diseased regions,and Bernoulli trials selectively reduce redundant spikes to ensure energy efficiency on low-power devices.We used a comprehensive dataset of 87,000 RGB images of plant leaves,which included 38 distinct classes of healthy and unhealthy leaves.To train and evaluate three distinct neural network architectures,DeepSNN,SimpleCNN,and SimpleFCNN,the dataset was rigorously preprocessed,including stochastic rotation,horizontal flip,resizing,and normalization.Moreover,by integrating Bernoulli trials to regulate spike generation,ourmethod focuses on extracting themost relevant featureswhile reducingcomputational overhead.Using a comprehensivedatasetof87,000RGB images across 38 classes,we rigorously preprocessed the data and evaluated three architectures:DeepSNN,SimpleCNN,and SimpleFCNN.The results demonstrate that DeepSNN outperforms the other models,achieving superior accuracy,efficient feature extraction,and robust spike management,thereby establishing the potential of SNNs for real-time,energy-efficient agricultural applications.
文摘The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks.
基金National Natural Science Foundation of China(No.12472038)Natural Science Foundation of Jiangsu Province(No.BK20230688)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB440004)Key Research and Development Program of Xuzhou(No.KC22404)Research Fund for Doctoral Degree Teachers of Jiangsu Normal University of China(No.22XFRS011).
文摘A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.
文摘To address the recycling challenges posed by the global peak of wind turbine blade retirement,this study aims to establish a decision-making model for reverse logistics modes of decommissioned blades,resolving the multi-agent collaborative optimization problem under ultra-high logistics cost constraints.Based on the characteristics of centralized sourcing and determinable elements in blade reverse logistics,we developed three models dominated by wind power equipment manufacturers,operators,and third-party enterprises,respectively.The research analyzes influencing factors on reverse logistics mode selection and proposes a threshold decision mechanism for mode selection.Key findings reveal:technological strength serves as the core driver for manufacturer-dominated models;channel efficiency determines the applicability of operator-led models;insufficient economies of scale may hinder third-party model development.This study provides decision-making foundations for the resource utilization of decommissioned blades.
基金supported by the National Natural Science Foundation of China(No.52388102)the Sichuan Science and Technology Program(No.2023ZDZX0008)China.The authors would like to thank the Guoneng Shuo-Huang Railway Development Company,China for providing vehicle parameters and line data for this project.The authors would also like to acknowledge the Xplorer Prize for sponsoring the project.
文摘Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model.
文摘我校公共课部英语教研室高雅琳老师撰写的学术论文"Genetically optimized neural network for college English teaching evaluation method"在SSCI期刊《Education and Information Technologies》上发表,被SSCI检索收录,该期刊在2025年中国科学院SCI期刊分区表属于2区(教育学大类),IF4.8,我校为独立完成单位。
文摘The increasing global demand for energy,coupled with concerns about environmental sustainability,has underscored the need for a transition toward renewable energy sources.A well-structured teaching program under the framework of sustainable development in renewable energy seeks to give students the information,abilities,and critical thinking needed to solve energy-related problems sustainably.This research proposes AI-powered personalized learning,innovative real-time integration of diverse data,and adaptive teaching strategies to enhance student understanding regarding renewable energy concepts.The sheep flock-optimized innovative recurrent neural network(SFO-IRNN)will recommend relevant topics and resources based on students’performance.Renewable energy teaching data from assessmethments are combined with real-time IoT-based renewable energy data.This dataset contains renewable energy education using AI-driven teaching methods and internet-based learning.The data was preprocessed by handling missing values and min-max scaling.The data features were extracted using Fourier Transform(FT).Further application of 10-fold cross-validation will increase the reliability of the model as it can evaluate its performance metrics like accuracy,F1-score,recall,and precision on different subsets of student data,which improves its robustness and prevents overfitting.The findings showed that the proposed method is significantly better,which ensures that the students have a deeper theoretical and practical understanding of renewable energy technologies.In addition,integrating real-time IoT data from renewable energy sources gives students a chance to do live simulations and problems that would enhance analytical thinking and hands-on learning.The research shows that AI provides context-aware guidance on sustainable energy infrastructure,enhancing interactive and personalized learning.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
基金supported in part by the National Natural Science Foundation of China under Grants U1805262,61871446,and 61671251。
文摘The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.
基金the National High Technology Research and Development Program (863) of China (No. 2006AA11Z209)
文摘The purpose of this paper is to identify the critical road sections and intersections in a road network which have great influence on the normal transport functions of the road network and to optimize the road network structure by reducing its vulnerability. In this paper, the framework of road network structural vulnerability measurement and improvement model is proposed. The network efficiency model is used to define road network structural vulnerability. Shanghai freeway network is analyzed based on this model. We find that using this model the critical components of the road network can be identified. Two methods which are increasing connections and rewiring are proposed to optimize the road network structural vulnerability and the results can be used to reduce the network vulnerability. The measurement method that we put forward for structure vulnerability is useful and important to optimize road network structure.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Natural Science Foundation of Jiangsu Province(No.BK20130818)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)
文摘Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50904070)the Science and Technology Foundation of China University of Mining & Technology (Nos.2007A046 and 2008A042)the Joint Production and Research Innovation Project of Jiangsu Province (No.BY2009114)
文摘Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61101117,61171099,and 61362008)the National Key Scientific and Technological Project of China (Grant No.2012ZX03004005002)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.BUPT2012RC0112)the Natural Science Foundation of Jiangxi Province,China (Grant No.20132BAB201018)
文摘In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.
基金supported in part by Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701+1 种基金111 Project of China under Grant B14010China Mobile Research Institute under grant[2014]451
文摘In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.