期刊文献+
共找到13,646篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the N + 2 Transversal Network Method to the Study of a Coupled Resonator Filter
1
作者 Charmolavy Goslavy Lionel Nkouka Moukengue Conrad Onésime Oboulhas Tsahat +2 位作者 Haroun Abba Labane Barol Mafouna Kiminou Achille Makouka 《Open Journal of Applied Sciences》 2024年第6期1412-1424,共13页
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f... This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros. 展开更多
关键词 Resonator Filter Coupling Matrix Transmission Zero Transversal network method
在线阅读 下载PDF
Analysis of the Temperature Characteristics of High-speed Train Bearings Based on a Dynamics Model and Thermal Network Method 被引量:5
2
作者 Baosen Wang Yongqiang Liu +1 位作者 Bin Zhang Wenqing Huai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期351-363,共13页
High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in... High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions. 展开更多
关键词 High-speed train Axle box bearing Temperature characteristics Thermal network method
在线阅读 下载PDF
Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural Network Method 被引量:1
3
作者 Xueye WANG and Huang SONG (Department of Chemistry, Xiangtan University, Xiangtan 411105, China) Guanzhou QIU and Dianzuo WANG (Department of Mineral Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期435-438,共4页
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu... Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides. 展开更多
关键词 Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural network method
在线阅读 下载PDF
Estimation of Tsunami Run-up Height by Three Artificial Neural Network Methods
4
作者 Nuray GEDIK Emel IRTEM +1 位作者 H.Kerem CIGIZOGLU M.Sedat KABDASLI 《China Ocean Engineering》 SCIE EI 2009年第1期85-94,共10页
Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed ... Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons. 展开更多
关键词 tsanami run-up height artificial neural network methods EXPERIMENTS
在线阅读 下载PDF
Artificial Neural Network Method Based on Expert Knowledge and Its Application to Quantitative Identification of Potential Seismic Sources
5
作者 Hu Yinlei and Zhang YumingInstitute of Geology,SSB,Beijing 100029,China 《Earthquake Research in China》 1997年第2期64-72,共9页
In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule sampl... In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized. 展开更多
关键词 Artificial Neural network method Based on Expert Knowledge and Its Application to Quantitative Identification of Potential Seismic Sources LENGTH
在线阅读 下载PDF
Reinforcing a Dangerous Rock Mass Using the Flexible Network Method
6
作者 Yang Wendong Xie Quanmin Xia Yuanyou Li Xinping 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期354-358,共5页
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blast... Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses. 展开更多
关键词 dangerous rock mass flexible network reinforcement method finite element analysis.
在线阅读 下载PDF
Prevalence of depression and anxiety and related influencing factors in the Chinese population with noncommunicable chronic diseases:A network perspective
7
作者 Hua-Yu Li Dong-Yu Song +3 位作者 Yi-Qing Weng Yuan-Hao Tong Yi-Bo Wu Hong-Mei Wang 《World Journal of Psychiatry》 2025年第9期240-254,共15页
BACKGROUND The prevalence and severity of noncommunicable chronic diseases(NCDs)among Chinese residents have been increasing with mental health emerging as a critical challenge in disease management.AIM To examine the... BACKGROUND The prevalence and severity of noncommunicable chronic diseases(NCDs)among Chinese residents have been increasing with mental health emerging as a critical challenge in disease management.AIM To examine the interactions between depression,anxiety symptoms,and related factors,and to identify key factors in the Chinese population with NCDs.METHODS Data from the Psychology and Behavior Investigation of Chinese Residents were used in a cross-sectional survey of 6182 individuals with NCDs.This study measured depression and anxiety symptoms as well as their influencing factorsincluding social environments,individual behaviors and lifestyles,and subjective indicators.A network analysis approach was used for data assessment.RESULTS Network analysis demonstrated that several central factors(media exposure,family health,problematic internet use,suboptimal health status,intimate relationship violence,tired or little energy,and nervousness/anxious/on edge)and bridge factors(media exposure,problematic internet use,intimate partner violence,health literacy,and suboptimal health status)that significantly influenced the co-occurrence and interconnectedness of depression and anxiety symptoms.Additionally,gender,ethnicity,residency,and living status did not significantly influence the overall network strength.CONCLUSION Depression and anxiety are prevalent among the Chinese population with NCDs.Effective interventions should focus on managing key symptoms,promoting correct media use for health information,and fostering healthier family relationships. 展开更多
关键词 Noncommunicable chronic diseases DEPRESSION ANXIETY Influencing factors network analysis method
暂未订购
Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method 被引量:4
8
作者 ZHANG Runfa BILIGE Sudao CHAOLU Temuer 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第1期122-139,共18页
This paper extends a method, called bilinear neural network method(BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test funct... This paper extends a method, called bilinear neural network method(BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model,specific activation functions of "2-2" model and arbitrary functions of "2-2-3" model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p-gB KP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots,the evolution characteristic of these waves are exhibited. 展开更多
关键词 Arbitrary function solutions bilinear neural network method breather Lump solitons waves SOLITONS
原文传递
Numerical analysis on thermoacoustic engine using network method 被引量:6
9
作者 ZHANG Xiaoqing Li Qing GUO Fangzhong(Cryogenic Laboratory, Huazhong University of Science and Technology Wuhan 430074) ( Cryogenic Laboratory, the Chinese Academy of Sciences Beijing 100080) 《Chinese Journal of Acoustics》 2003年第2期166-175,共10页
The network method for modeling thermoacoustic engines is described. Some simulation results on acoustic fields and phases in engine, especially in the thermoacoustic stack are presented and analyzed. The effects of s... The network method for modeling thermoacoustic engines is described. Some simulation results on acoustic fields and phases in engine, especially in the thermoacoustic stack are presented and analyzed. The effects of some key factors on performance of stack and engine system are simulated and discussed. These effect factors include the spaces of plates of stack, the position of stack in engine system, the source parameter of stack, and the mean working pressure of the engine system. 展开更多
关键词 of LENGTH that Numerical analysis on thermoacoustic engine using network method IS on into
原文传递
A New Artificial Neural Network Method for Solving Schrodinger Equations on Unbounded Domains 被引量:1
10
作者 Joshua P.Wilson Weizhong Dai +1 位作者 Aniruddha Bora Jacob C.Boyt 《Communications in Computational Physics》 SCIE 2022年第9期1039-1060,共22页
The simulation for particle or soliton propagation based on linear or nonlinear Schrodinger equations on unbounded domains requires the computational domain to be bounded,and therefore,a special boundary treatment suc... The simulation for particle or soliton propagation based on linear or nonlinear Schrodinger equations on unbounded domains requires the computational domain to be bounded,and therefore,a special boundary treatment such as an absorbing boundary condition(ABC)or a perfectly matched layer(PML)is needed so that the reflections of outgoing waves at the boundary can be minimized in order to prevent the destruction of the simulation.This article presents a new artificial neural network(ANN)method for solving linear and nonlinear Schrodinger equations on unbounded domains.In particular,this method randomly selects training points only from the bounded computational space-time domain,and the loss function involves only the initial condition and the Schrodinger equation itself in the computational domainwithout any boundary conditions.Moreover,unlike standard ANNmethods that calculate gradients using expensive automatic differentiation,this method uses accurate finitedifference approximations for the physical gradients in the Schrodinger equation.In addition,a Metropolis-Hastings algorithm is implemented for preferentially selecting regions of high loss in the computational domain allowing for the use of fewer training points in each batch.As such,the present training method uses fewer training points and less computation time for convergence of the loss function as compared with the standard ANN methods.This new ANN method is illustrated using three examples. 展开更多
关键词 Linear and nonlinear Schrodinger equations artificial neural network method CONVERGENCE soliton and particle propagations
原文传递
VPVnet:A Velocity-Pressure-Vorticity Neural Network Method for the Stokes’Equations under Reduced Regularity
11
作者 Yujie Liu Chao Yang 《Communications in Computational Physics》 SCIE 2022年第3期739-770,共32页
We present VPVnet,a deep neural network method for the Stokes’equa-tions under reduced regularity.Different with recently proposed deep learning meth-ods[40,51]which are based on the original form of PDEs,VPVnet uses... We present VPVnet,a deep neural network method for the Stokes’equa-tions under reduced regularity.Different with recently proposed deep learning meth-ods[40,51]which are based on the original form of PDEs,VPVnet uses the least square functional of thefirst-order velocity-pressure-vorticity(VPV)formulation([30])as loss functions.As such,onlyfirst-order derivative is required in the loss functions,hence the method is applicable to a much larger class of problems,e.g.problems with non-smooth solutions.Despite that several methods have been proposed recently to reduce the regularity requirement by transforming the original problem into a corresponding variational form,while for the Stokes’equations,the choice of approximating spaces for the velocity and the pressure has to satisfy the LBB condition additionally.Here by making use of the VPV formulation,lower regularity requirement is achieved with no need for considering the LBB condition.Convergence and error estimates have been established for the proposed method.It is worth emphasizing that the VPVnet method is divergence-free and pressure-robust,while classical inf-sup stable mixedfinite elements for the Stokes’equations are not pressure-robust.Various numerical experiments including 2D and 3D lid-driven cavity test cases are conducted to demon-strate its efficiency and accuracy. 展开更多
关键词 Stokes’equations deep neural network method first-order velocity-pressure-vorticity
原文传递
Recursion-transform method and potential formulae of the m×n cobweb and fan networks 被引量:12
12
作者 谭志中 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期82-90,共9页
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ... In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms. 展开更多
关键词 recursion-transform method network model potential formula exact solution
原文传递
Simultaneous Determination of Iron and Manganese in Water Using Artificial Neural Network Catalytic Spectrophotometric Method 被引量:4
13
作者 JI Hongwei XU Yan +2 位作者 LI Shuang XIN Huizhen CAO Hengxia 《Journal of Ocean University of China》 SCIE CAS 2012年第3期323-330,共8页
A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is est... A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN- catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and manganese are drawn. 展开更多
关键词 artificial neural network simultaneous determination kinetic spectrophotometric method iron MANGANESE
在线阅读 下载PDF
The application of neural networks to comprehensive prediction by seismology prediction method 被引量:2
14
作者 王炜 吴耿锋 宋先月 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期210-215,共6页
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca... BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction. 展开更多
关键词 BP neural networks nonlinear relationship seismological method of earthquake prediction comprehensive earthquake prediction
在线阅读 下载PDF
Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method 被引量:1
15
作者 NIE Xiaobo LI Haibin 《Journal of Donghua University(English Edition)》 CAS 2021年第1期51-56,共6页
Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DN... Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DNN)is proposed.Firstly,SVM with good small sample learning ability is used to train small sample data,fit structural performance functions and establish regular integration regions.Secondly,DNN is approximated the integral function to achieve multiple integration in the integration region.Finally,structural reliability was obtained by DNN.Numerical examples are investigated to demonstrate the effectiveness of the present method,which provides a feasible way for the structural reliability analysis. 展开更多
关键词 support vector machine(SVM) neural network direct integration method structural reliability small sample data performance function
在线阅读 下载PDF
An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of c-φ Slopes with Spatially Variable Soil 被引量:4
16
作者 舒苏荀 龚文惠 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期113-122,共10页
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s... This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses. 展开更多
关键词 slope reliability spatial variability artificial neural network Latin hypercube sampling random finite element method
在线阅读 下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
17
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 BP neural networks activation function linearization method
在线阅读 下载PDF
Data-driven fusion and fission solutions in the Hirota–Satsuma–Ito equation via the physics-informed neural networks method
18
作者 Jianlong Sun Kaijie Xing Hongli An 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第11期15-23,共9页
Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via... Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via the physics-informed neural networks(PINN)method.By choosing suitable physically constrained initial boundary conditions,the data-driven fusion and fission solutions are obtained for the first time.Dynamical behaviors and error analysis of these solutions are investigated via illustratively numerical figures,which show that good results are achieved.It is pointed out that the PINN method adopted here can be effectively used to construct the data-driven fusion and fission solutions for other nonlinear integrable equations.Based on the powerful predictive capability of the PINN method and wide applications of fusion and fission in many physical areas,it is hoped that the data-driven solutions obtained here will be helpful for experts to predict or explain related physical phenomena. 展开更多
关键词 Hirota-Satsuma-Ito equation physics-informed neural networks method fusion and fission solutions
原文传递
A New Method for Identifying Influential Nodes and Important Edges in Complex Networks 被引量:2
19
作者 ZHANG Wei XU Jia LI Yuanyuan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第3期267-276,共10页
The identification of the influential nodes in a network is of great significance for understanding the features of the network and controlling the complexity of networks in society and in biology. In this paper, we ... The identification of the influential nodes in a network is of great significance for understanding the features of the network and controlling the complexity of networks in society and in biology. In this paper, we propose a novel centrality measure for a node by considering the importance of edges and compare the performance of this method with existing seven topological-based ranking methods on the Susceptible-Infected-Recovered (SIR) model. The simulation results for four different types of real networks show that the proposed method is robust and exhibits excellent performance in identifying the most influential nodes when spreading starting from both single origin and multipleorigins simultaneously. 展开更多
关键词 complex networks influential nodes centrality methods
原文传递
A local fuzzy method based on “p-strong” community for detecting communities in networks 被引量:1
20
作者 沈毅 任刚 +1 位作者 刘洋 徐家丽 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期589-595,共7页
In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglo... In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity. 展开更多
关键词 networkS local fuzzy method overlapping communities fuzzy coefficients
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部