期刊文献+
共找到546,317篇文章
< 1 2 250 >
每页显示 20 50 100
A load-balanced minimum energy routing algorithm for Wireless Ad Hoc Sensor Networks 被引量:4
1
作者 CAI Wen-yu JIN Xin-yu ZHANG Yu CHEN Kang-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期502-506,共5页
Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use... Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing). 展开更多
关键词 Wireless Ad Hoc Sensor networks (WSNs) load-balanced Minimum Energy Routing (LBMER)
在线阅读 下载PDF
Opportunistic Routing for Time-Variety and Load-Balance over Wireless Sensor Networks
2
作者 Nan Ding Guozhen Tan Wei Zhang 《Wireless Sensor Network》 2010年第9期718-723,共6页
To aware the topology of wireless sensor networks (WSN) with time-variety, and load-balance the resource of communication and energy, an opportunistic routing protocol for WSN based on Opportunistic Routing Entropy an... To aware the topology of wireless sensor networks (WSN) with time-variety, and load-balance the resource of communication and energy, an opportunistic routing protocol for WSN based on Opportunistic Routing Entropy and ant colony optimization, called ACO-TDOP, is proposed. At first, based on the second law of thermo-dynamics, we introduce the concept of Opportunistic Routing Entropy which is a parameter representing the transmission state of each node by taking into account the power left and the distance to the sink node. Then, it is proved that the problem of route thinking about Opportunistic Routing Entropy is shown to be NP-hard. So the protocol, ACO-TDOP, is proposed. At last, numerical results confirm that the ACO-TDOP is energy conservative and throughput gainful compared with other two existing routing protocols, and show that it is efficacious to analyze and uncover fundamental of message transmission with Opportunistic Routing in wireless network using the second law of thermodynamics. 展开更多
关键词 WIRELESS Sensor network load-balance Time-variety OPPORTUNISTIC ROUTING ENTROPY
在线阅读 下载PDF
A Load-Balancing Routing Algorithm Based on Ant Colony Optimization and Reinforcement Learning for LEO Satellite Networks
3
作者 Deng Xia Lin Wucheng +3 位作者 Hu Yingxin Hao Miaomiao Chang Le Huang Jiawei 《China Communications》 2025年第12期281-294,共14页
Low earth orbit (LEO) satellite networkscan provide wider service coverage and lower latencythan traditional terrestrial networks, which haveattracted considerable attention. However, the unevendistribution of human p... Low earth orbit (LEO) satellite networkscan provide wider service coverage and lower latencythan traditional terrestrial networks, which haveattracted considerable attention. However, the unevendistribution of human population and data trafficon the ground incurs unbalanced traffic load inLEO satellite networks. To this end, we proposea load-balancing routing algorithm for LEO satellitenetworks based on ant colony optimization and reinforcementlearning. In the ant colony algorithm,we improve the pheromone update rule by introducingload-aware heuristic information, e.g., the currentnode transmission overhead, delay and load status, andreinforcement learning-based link quality evaluation.It enables the routing algorithm to select the lightlyloaded node as the next hop to balance the networkload. We simulate and verify the proposed algorithmusing the NS2 simulation platform, and the resultsshow that our algorithm improves the data delivery ratioand throughput while ensuring lower latency andtransmission overhead. 展开更多
关键词 ant colony algorithm low earth orbit(LEO)satellite network reinforcement learning
在线阅读 下载PDF
Network perspective on rumination and non-suicidal self-injury among adolescents with depressive disorders
4
作者 Fang-Fang Zhang Rui Guo +3 位作者 Si-Lan Chen Wei Yang Xing-Li Liang Ming-Fang Ma 《World Journal of Psychiatry》 2026年第1期346-355,共10页
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha... BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations. 展开更多
关键词 Depressive disorders Adolescents network analysis RUMINATION Non-suicidal self-injury
暂未订购
Investigating the potential mechanisms of Wenqing Yin against atopic dermatitis based on network pharmacology,experimental pharmacology,and molecular docking
5
作者 Yi Wang Zhen Liu +3 位作者 Si-Man Li Lin Lin Wei Dai Meng-Yue Ren 《Traditional Medicine Research》 2026年第2期1-11,共11页
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o... Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses. 展开更多
关键词 Wenqing Yin atopic dermatitis mouse model UPLC-Orbitrap-MS/MS network pharmacology
暂未订购
Combined Fault Tree Analysis and Bayesian Network for Reliability Assessment of Marine Internal Combustion Engine
6
作者 Ivana Jovanović Çağlar Karatuğ +1 位作者 Maja Perčić Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期239-258,共20页
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ... This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels. 展开更多
关键词 Fault tree analysis Bayesian network RELIABILITY REDUNDANCY Internal combustion engine
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
7
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
Load-Balance Mechanism for WSNs Based on Minority Game with Dormancy Strategy
8
作者 张彦波 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期103-106,共4页
Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divid... Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divide some unconnected sub-networks and shorten the lifetime of WSNs. To tackle this problem, a load-balance mechanism is proposed based on minority game (MG) with dormancy strategy. This mechanism can cause the rich behaviors of cooperation , prolong lifetime of WSNs, and keep energy consumed evenly. This dormancy mechanism can save energy of nodes by keeping in sleep temperately . Simulation results show that the proposed strategy can efficiently enhance the lifetime of cluster and the lifetime of whole WSNs. 展开更多
关键词 minority game(MG) energy efficien cy dormancy mechanism wireless sensor networks(WSNs) load-balance
在线阅读 下载PDF
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
9
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES network
原文传递
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
10
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
11
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
12
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Energy-aware Load-balaning Fault-tolerant Routing Scheme for Ad hoc Sensor Networks
13
作者 程文青 熊志强 +2 位作者 刘威 杨宗凯 徐永建 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第1期81-85,共5页
Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolera... Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay. 展开更多
关键词 wireless sensor networks cross-layer design fault tolerant routing ENERGY-AWARE
在线阅读 下载PDF
Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR)in WSNs
14
作者 D.Loganathan M.Balasubramani +1 位作者 R.Sabitha S.Karthik 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期99-112,共14页
Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy ... Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets. 展开更多
关键词 Wireless sensor networks energy consumption load balanced clustering finest routing
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
15
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
Least-mean-square routing with load-balancing for wireless ad hoc networks
16
作者 陈西豪 陈惠民 周伟 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期131-135,共5页
Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy ... Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network. 展开更多
关键词 ad hoc network ROUTING least-mean-square routing (LMSR) route REQuest (RREQ).
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
17
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Advancing network pharmacology with artificial intelligence:the next paradigm in traditional Chinese medicine 被引量:1
18
作者 Xin Shao Yu Chen +4 位作者 Jinlu Zhang Xuting Zhang Yizheng Dai Xin Peng Xiaohui Fan 《Chinese Journal of Natural Medicines》 2025年第11期1358-1376,共19页
Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.... Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.Through the integration of network biology,TCM network pharmacology enables systematic evaluation of therapeutic efficacy and detailed elucidation of action mechanisms,establishing a novel research paradigm for TCM modernization.The rapid advancement of machine learning,particularly revolutionary deep learning methods,has substantially enhanced artificial intelligence(AI)technology,offering significant potential to advance TCM network pharmacology research.This paper describes the methodology of TCM network pharmacology,encompassing ingredient identification,network construction,network analysis,and experimental validation.Furthermore,it summarizes key strategies for constructing various networks and analyzing constructed networks using AI methods.Finally,it addresses challenges and future directions regarding cell-cell communication(CCC)-based network construction,analysis,and validation,providing valuable insights for TCM network pharmacology. 展开更多
关键词 Traditional Chinese medicine network pharmacology Artificial intelligence Efficacy evaluation Mechanism elucidation network construction network analysis
原文传递
TCM network pharmacology:new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies 被引量:1
19
作者 Ziyi Wang Tingyu Zhang +1 位作者 Boyang Wang Shao Li 《Chinese Journal of Natural Medicines》 2025年第11期1425-1434,共10页
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ... Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM. 展开更多
关键词 network pharmacology Traditional Chinese medicine network target Artificial intelligence MULTI-MODAL Multi-omics
原文传递
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
20
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部