期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
1
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization Algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based Optimization Algorithm(TLOA) Wireless Sensor networks(WSNs)
在线阅读 下载PDF
A VMIMO-Based Cooperative Routing Algorithm for Maximizing Network Lifetime 被引量:1
2
作者 Ji Zhang Dafang Zhang +2 位作者 Kun Xie Hong Qiao Shiming He 《China Communications》 SCIE CSCD 2017年第4期20-34,共15页
Energy efficiency is an important criterion for routing algorithms in the wireless sensor network. Cooperative routing can reduce energy consumption effectively stemming from its diversity gain advantage. To solve the... Energy efficiency is an important criterion for routing algorithms in the wireless sensor network. Cooperative routing can reduce energy consumption effectively stemming from its diversity gain advantage. To solve the energy consumption problem and maximize the network lifetime, this paper proposes a Virtual Multiple Input Multiple Output based Cooperative Routing algorithm(VMIMOCR). VMIMOCR chooses cooperative relay nodes based on Virtual Multiple Input Multiple Output Model, and balances energy consumption by reasonable power allocation among transmitters, and decides the forwarding path finally. The experimental results show that VMIMOCR can improve network lifetime from 37% to 348% in the medium node density, compared with existing routing algorithms. 展开更多
关键词 wireless sensor network(WSN) cooperative routing VMIMO maximizing network lifetime power allocation
在线阅读 下载PDF
Design of maximizing homogeneous and heterogeneous clustered sensor network lifetime 被引量:1
3
作者 金彦亮 蒋轶凡 +1 位作者 陈惠民 刘海涛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期789-798,共10页
Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we d... Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we describe the network lifetime as a function of the communication and data aggregation energy consumption and analyze the lifetime of different transmission schemes in the homogeneous and heterogeneous sensor networks. The analysis carried out in this paper can provide the guidelines for network deployment and protocol design in the future applications. 展开更多
关键词 network lifetime sensor network HOMOGENEOUS HETEROGENEOUS
在线阅读 下载PDF
Hybrid Teaching Learning Approach for Improving Network Lifetime in Wireless Sensor Networks
4
作者 P.Baskaran K.Karuppasamy 《Computers, Materials & Continua》 SCIE EI 2022年第1期1975-1992,共18页
In a wireless sensor network(WSN),data gathering is more effectually done with the clustering process.Clustering is a critical strategy for improving energy efficiency and extending the longevity of a network.Hierarch... In a wireless sensor network(WSN),data gathering is more effectually done with the clustering process.Clustering is a critical strategy for improving energy efficiency and extending the longevity of a network.Hierarchical modeling-based clustering is proposed to enhance energy efficiency where nodes that hold higher residual energy may be clustered to collect data and broadcast it to the base station.Moreover,existing approaches may not consider data redundancy while collecting data from adjacent nodes or overlapping nodes.Here,an improved clustering approach is anticipated to attain energy efficiency by implementingMapReduction for regulatingmapping and reducing complexity in routing mechanisms for eliminating redundancy and overlapping.In order to optimize the network performance,this work considers intelligent behaviors’to adapt with network changes and to introduce computational intelligence ability.In the proposed research,improved teaching learning based optimization is used to evaluate the coordinates of target nodes and nodes upgradation for determining energy consumption.Node upgradation is performed by integratingMap reduction to attain modification in Hop size of nodes.This variation reduces communication complexities.Therefore,network lifetime is increased,and redundancy is reduced.While comparingwith existing approaches here,sleep and wake-up nodes are considered for data transmission.The proposed algorithm clearly demonstrates 50%,16%&12%improvement in nodes lifetime,residual energy and throughput respectively compared to other models.Also it shows progressive improvement in reducing average waiting time,average queuing time and average energy utilization as 30%,20%and 46%respectively.Simulation has been done in NS-2 environment for distributed heterogeneous networks. 展开更多
关键词 Map reduction optimization Teaching-learning energy efficiency network lifetime heterogeneous network
在线阅读 下载PDF
LOA-RPL:Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime
5
作者 Sankar Sennan Somula Ramasubbareddy +2 位作者 Anand Nayyar Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2021年第10期351-371,共21页
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c... Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols. 展开更多
关键词 Internet of things cluster head clustering protocol optimization algorithm lion optimization algorithm network lifetime routing protocol wireless sensor networks energy consumption low-power and lossy networks
在线阅读 下载PDF
Network Lifetime Global Optimization for Multi-Source and Single-Sink Topology in Wireless Sensor Networks
6
作者 王晖 吴迪 +1 位作者 AGOULMINE Nazim 马懋德 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第2期195-203,共9页
The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with su... The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with such a topology,the joint optimal design in the physical,medium access control(MAC) and network layers is considered for network lifetime maximization(NLM).The problem of integrating multi-layer information to compute NLM,which involves routing flow,link schedule and transmission power,is formulated as a nonlinear optimization problem.Specially under time division multiple access(TDMA) scheme,this problem can be transformed into a convex optimization problem.To solve it analytically we make use of the property that local optimization is global optimization in convex problem.This allows us to exploit the Karush-Kuhn-Tucker (KKT) optimality conditions to solve it and obtain analytical solution expression,i.e.,the globally optimal network lifetime(NL).NL is derived as a function of number of nodes,their initial energy and data rate arrived at them. Based on the analysis of analytical approach,it takes the influence of data rates,link access and routing method over NLM into account.Moreover,the globally optimal transmission schemes are achieved by solution set during analytical approach and applied to algorithms in TDMA-based WSNs aiming at NLM on OMNeT++ to compare with other suboptimal schemes. 展开更多
关键词 multi-source and single-sink (MSSS) topology network lifetime cross-layer optimization Karush- Kuhn-Tucker (KKT) optimality conditions global optimization analytical solution
原文传递
Wireless Sensor Network Lifetime Enhancement Using Modified Clustering and Scheduling Algorithm
7
作者 K. Ramesh K. Somasundaram 《Circuits and Systems》 2016年第8期1787-1793,共7页
Random distribution of sensor nodes in large scale network leads redundant nodes in the application field. Sensor nodes are with irreplaceable battery in nature, which drains the energy due to repeated collection... Random distribution of sensor nodes in large scale network leads redundant nodes in the application field. Sensor nodes are with irreplaceable battery in nature, which drains the energy due to repeated collection of data and decreases network lifetime. Scheduling algorithms are the one way of addressing this issue. In proposed method, an optimized sleep scheduling used to enhance the network lifetime. While using the scheduling algorithm, the target coverage and data collection must be maintained throughout the network. In-network, aggregation method also used to remove the unwanted information in the collected data in level. Modified clustering algorithm highlights three cluster heads in each cluster which are separated by minimum distance between them. The simulation results show the 20% improvement in network lifetime, 25% improvement in throughput and 30% improvement in end to end delay. 展开更多
关键词 Clustering Algorithm Wireless Sensor networks Scheduling Algorithm network lifetime
在线阅读 下载PDF
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
8
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
9
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Efficient Resource Management in IoT Network through ACOGA Algorithm
10
作者 Pravinkumar Bhujangrao Landge Yashpal Singh +1 位作者 Hitesh Mohapatra Seyyed Ahmad Edalatpanah 《Computer Modeling in Engineering & Sciences》 2025年第5期1661-1688,共28页
Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines A... Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines Ant Colony Optimization(ACO)and the Greedy Algorithm(GA).ACO finds smart paths while Greedy makes quick decisions.This improves energy use and performance.ACOGA outperforms Hybrid Energy-Efficient(HEE)and Adaptive Lossless Data Compression(ALDC)algorithms.After 500 rounds,only 5%of ACOGA’s nodes are dead,compared to 15%for HEE and 20%for ALDC.The network using ACOGA runs for 1200 rounds before the first nodes fail.HEE lasts 900 rounds and ALDC only 850.ACOGA saves at least 15%more energy by better distributing the load.It also achieves a 98%packet delivery rate.The method works well in mixed IoT networks like Smart Water Management Systems(SWMS).These systems have different power levels and communication ranges.The simulation of proposed model has been done in MATLAB simulator.The results show that that the proposed model outperform then the existing models. 展开更多
关键词 Energy management IoT networks ant colony optimization(ACO) greedy algorithm hybrid optimization routing algorithms energy efficiency network lifetime
在线阅读 下载PDF
Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan
11
作者 Nimisha Rajput Amit Kumar +3 位作者 Raghavendra Pal Nishu Gupta Mikko Uitto Jukka Mäkelä 《Computer Modeling in Engineering & Sciences》 2025年第6期3839-3859,共21页
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a... Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations. 展开更多
关键词 Wireless sensor networks(WSNs) energy efficiency reinforcement learning network lifetime dynamic node management autonomous surveillance
在线阅读 下载PDF
Data Aggregation Scheduling with Guaranteed Lifetime and Efficient Latency in Wireless Sensor Networks 被引量:4
12
作者 Chen Zhengyu Yang Geng +3 位作者 Chen Lei Xu Jian Wang Haiyong Yang Zhen 《China Communications》 SCIE CSCD 2012年第9期11-21,共11页
In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggrega... In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre. 展开更多
关键词 WSNs data aggregation aggregationscheduling network lifetime LATENCY
在线阅读 下载PDF
Weak node protection to maximize the lifetime of wirelesssensor networks 被引量:2
13
作者 MAO Yuxing ZHAO Huiyuan YAN Dongmei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期693-706,共14页
Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network ... Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime. 展开更多
关键词 wireless sensor network (WSN) multi-hop transmission ROUTING network lifetime energy efficient
在线阅读 下载PDF
Tradeoff between utility and lifetime in energy-constrained wireless sensor networks 被引量:1
14
作者 Meng ZHENG Haibin YU +1 位作者 Jianying ZHENG Peng ZENG 《控制理论与应用(英文版)》 EI 2010年第1期75-80,共6页
We study the tradeoff between network utility and network lifetime using a cross-layer optimization approach. The tradeoff model in this paper is based on the framework of layering as optimization decomposition. Our t... We study the tradeoff between network utility and network lifetime using a cross-layer optimization approach. The tradeoff model in this paper is based on the framework of layering as optimization decomposition. Our tradeoff model is the first one that incorporates time slots allocation into this framework. By using Lagrangian dual decomposition method, we decompose the tradeoff model into two subproblems: routing problem at network layer and resource allocation problem at medium access control (MAC) layer. The interfaces between the layers are precisely the dual variables. A partially distributed algorithm is proposed to solve the nonlinear, convex, and separable tradeoff model. Numerical simulation results are presented to support our algorithm. 展开更多
关键词 Wireless sensor networks network utility network lifetime Dual decomposition
在线阅读 下载PDF
Fuzzy Based Adaptive Clustering to Improve the Lifetime of Wireless Sensor Network 被引量:1
15
作者 D.Uma Maheswari S.Sudha M.Meenalochani 《China Communications》 SCIE CSCD 2019年第12期56-71,共16页
The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in C... The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in CH selection inhibits it from attaining enhanced lifetime. CBCH ensures maximum network lifetime when CH is close to the centroid of the cluster. However, for a widely distributed network, CBCH results in small sized clusters increasing the inter cluster communication cost. Hence, with an objective to enhance the network lifetime, a fuzzy based two-level hierarchical routing protocol is proposed. The novelty of the proposal lies in identification of appropriate parameters used in Cluster Head and Super Cluster Head selection. Experiments for different network scenarios are performed through both simulation and hardware to validate the proposal. The performance of the network is evaluated in terms of Node Death. The proposal is compared with F-SCH and the results reveal the efficacy of the proposal in enhancing the lifetime of network. 展开更多
关键词 hierarchical routing node degree CENTRALITY network lifetime FUZZY wireless sensor networks
在线阅读 下载PDF
Adaptive Multi-Cost Routing Protocol to Enhance Lifetime for Wireless Body Area Network
16
作者 Muhammad Mateen Yaqoob Waqar Khurshid +4 位作者 Leo Liu Syed Zulqarnain Arif Imran Ali Khan Osman Khalid Raheel Nawaz 《Computers, Materials & Continua》 SCIE EI 2022年第7期1089-1103,共15页
Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to con... Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss. 展开更多
关键词 Multi-cost routing protocol network lifetime wireless body area network adaptive routing residual energy CLUSTERING poisson distribution
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
17
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 CLUSTERING energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(WOA) wireless sensor networks(WSNs)
在线阅读 下载PDF
Sensor deployment strategy for chain-type wireless underground mine sensor network 被引量:16
18
作者 CHEN Guang-zhu ZHU Zhen-cai ZHOU Gong-bo SHEN Chun-feng SUN Yan-jing 《Journal of China University of Mining and Technology》 EI 2008年第4期561-566,共6页
Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (... Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines. 展开更多
关键词 wireless sensor networks chain-type underground mine sensor node deployment network lifetime
在线阅读 下载PDF
Node deployment strategy optimization for wireless sensor network with mobile base station 被引量:7
19
作者 龙军 桂卫华 《Journal of Central South University》 SCIE EI CAS 2012年第2期453-458,共6页
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica... The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends. 展开更多
关键词 wireless sensor network mobile base station network optimization energy consumption balancing density ratio of sensor node network lifetime
在线阅读 下载PDF
A sink moving scheme based on local residual energy of nodes in wireless sensor networks 被引量:4
20
作者 谭长庚 许可 +1 位作者 王建新 陈松乔 《Journal of Central South University》 SCIE EI CAS 2009年第2期265-268,共4页
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ... In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly. 展开更多
关键词 wireless sensor network network lifetime moving scheme residual energy
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部