With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not onl...With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not only a technological leap forward but also a major trend shaping the future of global connectivity.As a layered heterogeneous network,NTN integrates multiple aerial platforms—including satellites,high-altitude platform systems(HAPS),and unmanned aerial systems(UAS)—to provide flexible and composable solutions aimed at achieving seamless worldwide communication coverage.展开更多
This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational comple...This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational complexity, and uses the two-dimensional Poisson point process to model the locations of K-tier base stations and receivers, including those of legitimate users and eavesdroppers. Then, the achievable secrecy rates for an arbitrary user are determined and the upper and lower bounds of secrecy coverage probability derived on the condition that cross-tier interference is the main contributor to aggregate interference. Finally, our analysis results reveal the innate connections between information-theoretic security and the spatial densities of legitimate and malicious nodes.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR...To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.展开更多
In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to co...In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.展开更多
A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect...To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.展开更多
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del...High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.展开更多
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi...The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.展开更多
In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep le...In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.展开更多
The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neu...The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio(Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio(Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons.展开更多
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos...It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.展开更多
As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental result...Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.展开更多
Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, te...Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.展开更多
We investigate the problem of how to minimize the energy consumption in multi-hop Wireless Sensor Network (WSN),under the constraint of end-to-end reliability Quality of Seervice (QoS) requirement.Based on the investi...We investigate the problem of how to minimize the energy consumption in multi-hop Wireless Sensor Network (WSN),under the constraint of end-to-end reliability Quality of Seervice (QoS) requirement.Based on the investigation,we jointly consider the routing,relay selection and power allocation algorithm,and present a novel distributed cross-layer strategy using opportunistic relaying scheme for cooperative communication.The results show that under the same QoS requirement,the proposed cross-layer strategy performs better than other cross-layer cooperative communication algorithms in energy efficiency.We also investigated the impact of several parameters on the energy efficiency of the cooperative communication in WSNs,thus can be used to provide guidelines to decide when and how to apply cooperation for a given setup.展开更多
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct...A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.展开更多
This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical...This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical layer, the transmitting probability of medium access control (MAC) layer, and the automatic repeat request (ARQ) of link layer. In this algorithm, a cross-layer optimization is preformed to minimizing the energy consuming per bit. Through theory deducing, the transmitting probability and transmitting power level is determined, and the relationship between energy consuming per bit and throughput per node is provided. Analytical results show that the cross-layer algorithm results in a significant energy savings relative to layered design subject to the same throughput per node, and the energy saving is extraordinary in the low throughput region.展开更多
Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performa...Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.展开更多
Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among...Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.展开更多
文摘With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not only a technological leap forward but also a major trend shaping the future of global connectivity.As a layered heterogeneous network,NTN integrates multiple aerial platforms—including satellites,high-altitude platform systems(HAPS),and unmanned aerial systems(UAS)—to provide flexible and composable solutions aimed at achieving seamless worldwide communication coverage.
基金supported in part by National Natural Science Foundation of China under Grant No.61401510,61521003National High-tech R&D Program(863 Program)under Grant No.2015AA01A708
文摘This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational complexity, and uses the two-dimensional Poisson point process to model the locations of K-tier base stations and receivers, including those of legitimate users and eavesdroppers. Then, the achievable secrecy rates for an arbitrary user are determined and the upper and lower bounds of secrecy coverage probability derived on the condition that cross-tier interference is the main contributor to aggregate interference. Finally, our analysis results reveal the innate connections between information-theoretic security and the spatial densities of legitimate and malicious nodes.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
基金supported in part by the National Natural Science Foundation of China under Grant No.61871032in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101in part by the Open Research Fund of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology) under Grant CRKL190204
文摘To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No. U1530118+1 种基金NSFC under Grant No. 61602030National Basic Research Program of China ("973 program") under Grant No. 2013CB329101
文摘In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
基金The National Natural Science Foundation of China(No.61573098,71401072)the Natural Science Foundation of Jiangsu Province(No.BK20130814)
文摘To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.
基金supported by the National Natural Science Foundation of China (U1834211, 61925302, 62103033)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems (20210104)。
文摘High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.
基金supported by the National Natural Science Foundation of China under Grant No.61371075the 863 project SS2015AA011306
文摘The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.
基金supported in part by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology Corporationin part by the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2018045, SAST2016034, SAST2017049)+1 种基金in part by the China Fundamental Research Fund for the Central Universities (No. 3102018QD096)in part by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. ZZ2019024)
文摘In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11265008,11372122,and 11365014
文摘The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio(Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio(Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons.
基金supported by the National Natural Science Foundation of China(61573285)
文摘It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
文摘Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.
文摘Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.
基金Supported by the 100 Top-Talents Program of Chinese Academic of Sciences (No. 99M2008M02)
文摘We investigate the problem of how to minimize the energy consumption in multi-hop Wireless Sensor Network (WSN),under the constraint of end-to-end reliability Quality of Seervice (QoS) requirement.Based on the investigation,we jointly consider the routing,relay selection and power allocation algorithm,and present a novel distributed cross-layer strategy using opportunistic relaying scheme for cooperative communication.The results show that under the same QoS requirement,the proposed cross-layer strategy performs better than other cross-layer cooperative communication algorithms in energy efficiency.We also investigated the impact of several parameters on the energy efficiency of the cooperative communication in WSNs,thus can be used to provide guidelines to decide when and how to apply cooperation for a given setup.
文摘A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.
文摘This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical layer, the transmitting probability of medium access control (MAC) layer, and the automatic repeat request (ARQ) of link layer. In this algorithm, a cross-layer optimization is preformed to minimizing the energy consuming per bit. Through theory deducing, the transmitting probability and transmitting power level is determined, and the relationship between energy consuming per bit and throughput per node is provided. Analytical results show that the cross-layer algorithm results in a significant energy savings relative to layered design subject to the same throughput per node, and the energy saving is extraordinary in the low throughput region.
基金Supported by National Natural Science Foundation of P. R. China (60374072, 60434030)
文摘Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.
文摘Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.