Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS ...Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS described the propagation of queue within a link while VOS reflected the spillover velocity of vehicle queue.Based on the two indexes,network jam simulation was carried out on a regular signalized road network.The simulation results show that:1) The propagation of traffic congestion on a signalized road network can be classified into two stages:virtual split driven stage and flow rate driven stage.The former stage is characterized by decreasing virtual split while the latter only depends on flow rate; 2) The jam propagation rate and direction are dependent on traffic demand distribution and other network parameters.The direction with higher demand gets more chance to be jammed.Our findings can serve as the basis of the prevention of the formation and propagation of network traffic jam.展开更多
In the past decades,with the widespread implementation of wireless networks,such as the Internet of Things,an enormous demand for designing relative algorithms for various realistic scenarios has arisen.However,with t...In the past decades,with the widespread implementation of wireless networks,such as the Internet of Things,an enormous demand for designing relative algorithms for various realistic scenarios has arisen.However,with the widening of scales and deepening of network layers,it has become increasingly challenging to design such algorithms when the issues of message dissemination at high levels and the contention management at the physical layer are considered.Accordingly,the abstract medium access control(absMAC)layer,which was proposed in2009,is designed to solve this problem.Specifically,the absMAC layer consists of two basic operations for network agents:the acknowledgement operation to broadcast messages to all neighbors and the progress operation to receive messages from neighbors.The absMAC layer divides the wireless algorithm design into two independent and manageable components,i.e.,to implement the absMAC layer over a physical network and to solve higher-level problems based on the acknowledgement and progress operations provided by the absMAC layer,which makes the algorithm design easier and simpler.In this study,we consider the implementation of the absMAC layer under jamming.An efficient algorithm is proposed to implement the absMAC layer,attached with rigorous theoretical analyses and extensive simulation results.Based on the implemented absMAC layer,many high-level algorithms in non-jamming cases can be executed in a jamming network.展开更多
基金Project(2012CB725402)supported by the State Key Development Program for Basic Research of ChinaProject(2012MS21175)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(Bsh1202056)supported by the Excellent Postdoctoral Science Foundation of Zhejiang Province,China
文摘Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS described the propagation of queue within a link while VOS reflected the spillover velocity of vehicle queue.Based on the two indexes,network jam simulation was carried out on a regular signalized road network.The simulation results show that:1) The propagation of traffic congestion on a signalized road network can be classified into two stages:virtual split driven stage and flow rate driven stage.The former stage is characterized by decreasing virtual split while the latter only depends on flow rate; 2) The jam propagation rate and direction are dependent on traffic demand distribution and other network parameters.The direction with higher demand gets more chance to be jammed.Our findings can serve as the basis of the prevention of the formation and propagation of network traffic jam.
基金partially supported by the National Key R&D Program of China(No.2019YFB2102600)the National Natural Science Foundation of China(NSFC)(No.61971269)。
文摘In the past decades,with the widespread implementation of wireless networks,such as the Internet of Things,an enormous demand for designing relative algorithms for various realistic scenarios has arisen.However,with the widening of scales and deepening of network layers,it has become increasingly challenging to design such algorithms when the issues of message dissemination at high levels and the contention management at the physical layer are considered.Accordingly,the abstract medium access control(absMAC)layer,which was proposed in2009,is designed to solve this problem.Specifically,the absMAC layer consists of two basic operations for network agents:the acknowledgement operation to broadcast messages to all neighbors and the progress operation to receive messages from neighbors.The absMAC layer divides the wireless algorithm design into two independent and manageable components,i.e.,to implement the absMAC layer over a physical network and to solve higher-level problems based on the acknowledgement and progress operations provided by the absMAC layer,which makes the algorithm design easier and simpler.In this study,we consider the implementation of the absMAC layer under jamming.An efficient algorithm is proposed to implement the absMAC layer,attached with rigorous theoretical analyses and extensive simulation results.Based on the implemented absMAC layer,many high-level algorithms in non-jamming cases can be executed in a jamming network.