期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
Research on the Impact and Strategies of Rail Transit Network Integration in the Context of Metropolitan Area Development:A Case Study of the Wuhan Metropolitan Area
1
作者 Xiaorong Wang Rong Li 《Proceedings of Business and Economic Studies》 2024年第5期73-80,共8页
The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand... The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand characteristics and economic aspects of rail transit within metropolitan regions and argues that the construction of an integrated urban rail transit network is an effective approach to support their development.Rail transit in metropolitan areas offers both technical and economic advantages,improving the efficiency of time and space resource utilization,fostering economic cooperation,and ultimately contributing to an integrated development model.However,the integration of rail transit networks faces several challenges,including road network planning,technical standards,and operational organization.Using the Wuhan metropolitan area as a case study,this paper analyzes the challenges of rail transit network integration and proposes strategic solutions for development. 展开更多
关键词 Rail transit Metropolitan area Rail network integration URBANIZATION
在线阅读 下载PDF
Study on Security Technologies for Wireles Network Integration
2
作者 Feng Min (Department of Communication Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China) 《ZTE Communications》 2006年第2期43-47,共5页
The network integration provides users with a new network with long connection time and a high data rate when needed, but it also brings the defects of all the networks that integrate together into the integrated netw... The network integration provides users with a new network with long connection time and a high data rate when needed, but it also brings the defects of all the networks that integrate together into the integrated network. This will cause all kinds of existing and some new security problems in the operation of the integrated network. A complete protection based on recovery is proposed in the paper. It uses the public-key algorithm to authorize and private-key algorithm to encrypt the communicating data. This solution can provide the system with reliable security, and avoid Denial of Service (DoS) of the user. This solution has been proposed lately, and we should further identify the correct action of all the layers and figure out how to react when a legal node is framed by multiple malicious nodes. 展开更多
关键词 SECURITY USA WLAN NODE IEEE IPSEC Study on Security Technologies for Wireles network integration
在线阅读 下载PDF
Research on static and dynamic comprehensive evaluation of urban agglomeration road network integration based on catastrophe theory
3
作者 Minqing Zhu Wenyu Wang +4 位作者 Hongjun Cui Yizhe Yang Jiexi Chen Jianling Gu Fengyun Zhang 《Journal of Traffic and Transportation Engineering(English Edition)》 2025年第3期701-721,共21页
The integration of urban agglomeration road networks is an inevitable trend of regional development.It is very important to build a scientific and reasonable evaluation system for the integration of urban agglomeratio... The integration of urban agglomeration road networks is an inevitable trend of regional development.It is very important to build a scientific and reasonable evaluation system for the integration of urban agglomeration road networks.The existing research may not be sufficient to evaluate the road network level reliably if the city unit in the region is not considered enough.It is necessary to evaluate the level of road network integration from a dynamic perspective,in consideration of the economic scale of urban population and the level of road network in developing countries such as China is in the stage of rapid development.Therefore,this paper constructs an analytic hierarchy process(AHP)-catastrophe progression method evaluation model by considering the equilibrium degree and the fitness degree of urban unit road network.This evaluation model combines the integration of road network quantity,shape,and quality to evaluate the level of urban agglomeration road network integration from dynamic and static ways.Taking Beijing—Tianjin—Hebei urban agglomeration and Yangtze River Delta urban agglomeration as examples,this paper uses the road network data of urban agglomerations in 2010,2015,and2020 to make a comparative study.The results show that the growing trend of Yangtze River Delta urban agglomeration is at a high level by 2020,while the trend of Beijing—Tianjin—Hebei urban agglomeration is at a general level.Compared with the previous evaluation models,this evaluation method has a good explanation and can emphasize the consideration of dynamic evaluation.The research results annotate the current situation of road network integration of Beijing—Tianjin—Hebei and Yangtze River Delta urban agglomeration that can satisfy the requirement of urban agglomeration development.And it provides decision-making reference for further optimizing of the road network planning and layout of urban agglomeration. 展开更多
关键词 Urban agglomeration Road network integration Catastrophe theory Static evaluation model Dynamic evaluation model
原文传递
Physics-integrated neural networks for improved mineral volumes and porosity estimation from geophysical well logs 被引量:1
4
作者 Prasad Pothana Kegang Ling 《Energy Geoscience》 2025年第2期394-410,共17页
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t... Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications. 展开更多
关键词 Physics integrated neural networks PETROPHYSICS Well logs Oil and gas Reservoir characterization MINERALOGY Machine learning
在线阅读 下载PDF
Spectrum Sharing Policy-Based Consensus Mechanism in Satellite-Terrestrial Integrated Network
5
作者 Wang Weihan Zhao Youping 《China Communications》 2025年第6期101-115,共15页
Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resour... Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resources,a spectrum sharing policy-based consensus mechanism is proposed in this paper.Firstly,a spectrum sharing algorithm based on graph neural network is designed in the satelliteterrestrial spectrum sharing networks under the underlay model.It avoids high computational overhead of the traditional iterative optimization algorithm when the wireless channel condition and network topology are highly dynamic.Secondly,a consensus mechanism based on spectrum sharing strategy is designed,which converts the traditional meaningless hash problem into the graph neural network training.Miners compete for accounting rights by training a graph neutral network model that meets the spectrum sharing requirement.Finally,the consensus delay,communication and storage overhead of the proposed consensus mechanism are analyzed theoretically.The simulation results show that the proposed consensus mechanism can effectively improve spectrum efficiency with excellent scalability and generalization performance. 展开更多
关键词 blockchain consensus mechanism satellite-terrestrial integrated network spectrum sharing
在线阅读 下载PDF
Agile Coverage for Low-Altitude Aerial Intelligent Networks:A Blended Hyper-Cellular Solution
6
作者 Zhou Sheng Xie Bowen +3 位作者 Shen Daohong Feng Wei Jiang Zhiyuan Niu Zhisheng 《China Communications》 2025年第9期22-36,共15页
This paper proposes a novel blended hyper-cellular architecture for low-altitude aerial intelligent networks(LAINs)to provide agile coverage tailored to active air routes and takeoff/landing spots.Traditional cellular... This paper proposes a novel blended hyper-cellular architecture for low-altitude aerial intelligent networks(LAINs)to provide agile coverage tailored to active air routes and takeoff/landing spots.Traditional cellular networks struggle to meet the dynamic demands of low-altitude UAV communications due to their rigid structures.The hyper-cellular network(HCN)architecture separates control and traffic coverage,enabling flexible and energy-efficient operations.The key components include control base stations(CBSs)for wide-area signaling coverage and traffic base stations(TBSs)that can be dynamically activated based on traffic demands.The proposed solution also integrates space information networks(SINs)to enhance the coverage efficiency.Key technologies such as all-G CBS using RISC-V architecture,AI-powered radio maps for low-altitude environments,and agile TBS coverage adaptation are introduced with some preliminary studies.These designs aim to address challenges like mobility management,interference coordination,and the need for real-time spectrum sharing in blended satellite-terrestrial networks.The proposed solution offers a scalable and agile framework to support the rapidly growing demand for reliable,low-latency,and high-capacity UAV communications in urban environments. 展开更多
关键词 coverage optimization hyper-cellular low-altitude aerial networks space-air-ground integrated networks
在线阅读 下载PDF
Two-Hop Delay-Aware Energy Efficiency Resource Allocation in Space-Air-Ground Integrated Smart Grid Network
7
作者 Qinghai Ou Min Yang +1 位作者 Jingcai Kong Yang Yang 《Computers, Materials & Continua》 2025年第5期2429-2447,共19页
The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serv... The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W. 展开更多
关键词 Energy efficiency effective capacity delay requirement power allocation smart grid space-air-ground integrated network
在线阅读 下载PDF
Channel-Aware Handover Management for Space-Air-Ground Integrated Networks
8
作者 Chen Nuo Sun Zhili +3 位作者 Song Yujie Cao Yue Xia Xu Aduwati Binti Sali 《China Communications》 2025年第2期62-76,共15页
To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network en... To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio. 展开更多
关键词 channel modeling seamless handover space-air-ground integrated network
在线阅读 下载PDF
Key technologies for networking in satellite-terrestrial integrated network
9
作者 Haijun ZHANG Sichen LU Xiaoqi ZHANG 《Chinese Journal of Aeronautics》 2025年第9期267-270,共4页
1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring na... 1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring nations and regions,including the United States,Europe,China,and Russia.Specifically,Space X’s Starlink project has deployed over 6750 satellites,2while One Web has completed its initial phase of satellite constellation deployment with more than 600 satellites. 展开更多
关键词 satellite terrestrial integrated network satellite constellation starlink project next generation spatial information infrastructure Starlink OneWeb STIN
原文传递
Multi-Band Integrated Networking for Efficient Spectrum Utilization in 6G
10
作者 Wang Ailing Kong Lei +4 位作者 Liu Jianjun Xia Liang Wang Xiaoqian Wang Qixing Liu Guangyi 《China Communications》 2025年第4期42-54,共13页
The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic c... The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology. 展开更多
关键词 full spectrum access high and low frequency collaboration multi-band integrated networking 6G spectrum efficiency
在线阅读 下载PDF
MLB-TR: Multi-Service Load Balancing Routing Algorithm for Traffic Return in Integrated Satellite-Terrestrial Networks
11
作者 Liu Chang Zhang Jiaxin +2 位作者 Chang Zhaoyang Zhang Xing Wang Wenbo 《China Communications》 2025年第10期60-71,共12页
In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overl... In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works. 展开更多
关键词 integrated satellite-terrestrial network landing satellites load balancing traffic return
在线阅读 下载PDF
Dynamic Task Offloading and Resource Allocation for Air-Ground Integrated Networks Based on MADDPG
12
作者 Jianbin Xue Peipei Mao +2 位作者 Luyao Wang Qingda Yu Changwang Fan 《Journal of Beijing Institute of Technology》 2025年第3期243-267,共25页
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ... With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices. 展开更多
关键词 air-ground integrated network(AGIN) resource allocation dynamic task offloading multi-agent deep deterministic policy gradient(MADDPG) non-orthogonal multiple access(NOMA)
暂未订购
Call for Papers─Feature Topic Vol.23,No.1,2026 Space-Terrestrial Integrated 6G Network:Architecture,Networking,and Transmission Technologies
13
《China Communications》 2025年第6期F0003-F0003,共1页
With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of hig... With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation. 展开更多
关键词 communication technologiesthe space terrestrial integrated G network g network satellite constellations terrestrial networks artificial intelligence ai intelligent int satellite networks
在线阅读 下载PDF
Joint Power and Frequency Resource Allocation Algorithm for Integrated Satellite and Terrestrial Networks
14
作者 Xue Guanchang Yang Mingchuan +2 位作者 Yuan Shuai Guo Qing Liu Xiaofeng 《China Communications》 2025年第2期256-268,共13页
In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allo... In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization. 展开更多
关键词 integrated satellite and terrestrial network power allocation resource scheduling spectrum sharing
在线阅读 下载PDF
Integration strategies of hydrogen network in a refinery based on operational optimization of hydrotreating units 被引量:4
15
作者 Le Wu Xiaoqiang Liang +1 位作者 Lixia Kang Yongzhong Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1061-1068,共8页
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration... Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods. 展开更多
关键词 Hydrogenation reaction kinetics Hydrogen network integration strategies Optimization
在线阅读 下载PDF
Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method 被引量:1
16
作者 NIE Xiaobo LI Haibin 《Journal of Donghua University(English Edition)》 CAS 2021年第1期51-56,共6页
Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DN... Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DNN)is proposed.Firstly,SVM with good small sample learning ability is used to train small sample data,fit structural performance functions and establish regular integration regions.Secondly,DNN is approximated the integral function to achieve multiple integration in the integration region.Finally,structural reliability was obtained by DNN.Numerical examples are investigated to demonstrate the effectiveness of the present method,which provides a feasible way for the structural reliability analysis. 展开更多
关键词 support vector machine(SVM) neural network direct integration method structural reliability small sample data performance function
在线阅读 下载PDF
Integration and development of energy and information network in the Pan-Arctic region 被引量:2
17
作者 Xiaoxia Wei Jinyu Xiao +2 位作者 Zhe Wang Zhichun Wang Yun Tian 《Global Energy Interconnection》 2019年第6期505-513,共9页
The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides incre... The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme. 展开更多
关键词 Energy Interconnection Data center network traffic Integrated development of energy and information networks Global En ergy In terconnection
在线阅读 下载PDF
Joint User Association and Satellite Selection for Satellite-Terrestrial Integrated networks
18
作者 Qiu Wenjing Liu Aijun Han Chen 《China Communications》 SCIE CSCD 2024年第10期240-255,共16页
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ... In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul. 展开更多
关键词 dynamic backhaul links interference management satellite selection satellite-terrestrial integrated networks user association
在线阅读 下载PDF
Early warning of core network capacity in space-terrestrial integrated networks
19
作者 HAN Sai LI Ao +5 位作者 ZHANG Dongyue ZHU Bin WANG Zelin WANG Guangquan MIAO Jie MA Hongbing 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期855-864,共10页
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ... With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network. 展开更多
关键词 space-terrestrial integrated networks core network element capacity artificial intelligent(AI)
在线阅读 下载PDF
Load Statistics Priority Random Access Technology Based on Air-Space-Ground Integrated Network
20
作者 Enze Li Hao Huan +1 位作者 Jingyu Wang Kunshan Yang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期493-506,共14页
In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constan... In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems. 展开更多
关键词 air-space-ground integrated network random access satellite-to-ground statistics priority access success probability
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部