Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant g...In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.展开更多
As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with h...As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.展开更多
With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precisio...With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.展开更多
随着会话推荐的广泛应用,如何充分利用语义信息、建模用户跨会话兴趣以及抑制数据噪声成为提升推荐性能的关键。为此提出一种新颖的会话推荐增强框架LGSBR,通过整合大语言模型(large language model,LLM)的语义理解能力与图神经网络(gra...随着会话推荐的广泛应用,如何充分利用语义信息、建模用户跨会话兴趣以及抑制数据噪声成为提升推荐性能的关键。为此提出一种新颖的会话推荐增强框架LGSBR,通过整合大语言模型(large language model,LLM)的语义理解能力与图神经网络(graph neural network,GNN)的结构建模能力,实现语义增强与个性化推荐。具体而言,利用大语言模型及微调的语言模型生成项目补充文本嵌入和用户跨会话兴趣嵌入,通过软注意力机制融合文本与ID嵌入,生成语义丰富的项目表示;引入用户兴趣嵌入,结合对齐损失实现个性化推荐;最后通过两阶段权重学习过滤噪声项目,优化会话表示。实验结果表明,在Beauty数据集上,LGSBR的P@20达到21.38%,MRR@20达到6.76%,分别较SR-GNN基线提升23.3%和50.56%;在MovieLen-1M数据集上,P@20为25.86%,MRR@20为7.58%,分别提升12.63%和10.98%;研究验证了LGSBR在多种GNN模型上的通用性和有效性。展开更多
To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ...To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model,network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity,minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks,how to scientifically design satellite networks is also discussed.展开更多
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
文摘In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.
基金supported by the Program of Support Xinjiang by Technology(2024E02028,B2-2024-0359)Xinjiang Tianchi Talent Program of 2024,the Foundation of Chinese Academy of Sciences(B2-2023-0239)the Youth Foundation of Shandong Natural Science(ZR2023QD070).
文摘As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.
文摘With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.
文摘随着会话推荐的广泛应用,如何充分利用语义信息、建模用户跨会话兴趣以及抑制数据噪声成为提升推荐性能的关键。为此提出一种新颖的会话推荐增强框架LGSBR,通过整合大语言模型(large language model,LLM)的语义理解能力与图神经网络(graph neural network,GNN)的结构建模能力,实现语义增强与个性化推荐。具体而言,利用大语言模型及微调的语言模型生成项目补充文本嵌入和用户跨会话兴趣嵌入,通过软注意力机制融合文本与ID嵌入,生成语义丰富的项目表示;引入用户兴趣嵌入,结合对齐损失实现个性化推荐;最后通过两阶段权重学习过滤噪声项目,优化会话表示。实验结果表明,在Beauty数据集上,LGSBR的P@20达到21.38%,MRR@20达到6.76%,分别较SR-GNN基线提升23.3%和50.56%;在MovieLen-1M数据集上,P@20为25.86%,MRR@20为7.58%,分别提升12.63%和10.98%;研究验证了LGSBR在多种GNN模型上的通用性和有效性。
基金Sponsored by the National Natural Science Foundation of China(Grant No.6137110061001093+6 种基金61401118)the Natural Science Foundation of Shandong Province(Grant No.ZR2014FP016)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2011114HIT.NSRIF.2013136HIT.NSRIF.2016100)the Scientific Research Foundation of Harbin Institute of Technology at Weihai(Grant No.HIT(WH)201409HIT(WH)201410)
文摘To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model,network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity,minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks,how to scientifically design satellite networks is also discussed.