Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
Network forensics is a security infrastructure,and becomes the research focus of forensic investigation.However many challenges still exist in conducting network forensics:network has produced large amounts of data;th...Network forensics is a security infrastructure,and becomes the research focus of forensic investigation.However many challenges still exist in conducting network forensics:network has produced large amounts of data;the comprehensibility of evidence extracting from collected data;the efficiency of evidence analysis methods,etc.To solve these problems,in this paper we develop a network intrusion forensics system based on transductive scheme that can detect and analyze efficiently computer crime in networked environments,and extract digital evidence automatically.At the end of the paper,we evaluate our method on a series of experiments on KDD Cup 1999 dataset.The results demonstrate that our methods are actually effective for real-time network forensics,and can provide comprehensible aid for a forensic expert.展开更多
The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves stora...The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.展开更多
Two case studies are described which show application of forensic expertise to establish important circumstances related to the investigation of the crimes against wildlife flora and fauna.Forensic study of the animal...Two case studies are described which show application of forensic expertise to establish important circumstances related to the investigation of the crimes against wildlife flora and fauna.Forensic study of the animal hair is a method for investigation of the crimes against wildlife objects which is used more frequently during the recent years.The perspectives of development of the new branch of forensic research in Russia are formulated,and the proposals and recommendations for developing the Eurasian wildlife flora and fauna network are formulated in this article.展开更多
China Unicorn, the largest WCDMA 3G operator in China, meets the requirements of the historical Mobile Internet Explosion, or the surging of Mobile Internet Traffic from mobile terminals. According to the internal sta...China Unicorn, the largest WCDMA 3G operator in China, meets the requirements of the historical Mobile Internet Explosion, or the surging of Mobile Internet Traffic from mobile terminals. According to the internal statistics of China Unicom, mobile user traffic has increased rapidly with a Compound Annual Growth Rate (CAGR) of 135%. Currently China Unicorn monthly stores more than 2 trillion records, data volume is over 525 TB, and the highest data volume has reached a peak of 5 PB. Since October 2009, China Unicom has been developing a home-brewed big data storage and analysis platform based on the open source Hadoop Distributed File System (HDFS) as it has a long-term strategy to make full use of this Big Data. All Mobile Internet Traffic is well served using this big data platform. Currently, the writing speed has reached 1 390 000 records per second, and the record retrieval time in the table that contains trillions of records is less than 100 ms. To take advantage of this opportunity to be a Big Data Operator, China Unicom has developed new functions and has multiple innovations to solve space and time constraint challenges presented in data processing. In this paper, we will introduce our big data platform in detail. Based on this big data platform, China Unicom is building an industry ecosystem based on Mobile Internet Big Data, and considers that a telecom operator centric ecosystem can be formed that is critical to reach prosperity in the modern communications business.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 and 61170262the National High-Tech Research and Development Plan of China under Grant Nos.2012AA012506+4 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24Open Research Fund of Beijing Key Laboratory of Trusted Computing
文摘Network forensics is a security infrastructure,and becomes the research focus of forensic investigation.However many challenges still exist in conducting network forensics:network has produced large amounts of data;the comprehensibility of evidence extracting from collected data;the efficiency of evidence analysis methods,etc.To solve these problems,in this paper we develop a network intrusion forensics system based on transductive scheme that can detect and analyze efficiently computer crime in networked environments,and extract digital evidence automatically.At the end of the paper,we evaluate our method on a series of experiments on KDD Cup 1999 dataset.The results demonstrate that our methods are actually effective for real-time network forensics,and can provide comprehensible aid for a forensic expert.
基金the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China A3 Program (No. 61161140320) and the National Natural Science Foundation of China (No. 61233016)Intel Research Councils UPO program with title of security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.
文摘Two case studies are described which show application of forensic expertise to establish important circumstances related to the investigation of the crimes against wildlife flora and fauna.Forensic study of the animal hair is a method for investigation of the crimes against wildlife objects which is used more frequently during the recent years.The perspectives of development of the new branch of forensic research in Russia are formulated,and the proposals and recommendations for developing the Eurasian wildlife flora and fauna network are formulated in this article.
基金supported in part by the National Key Basic Research and Development(973)Program of China(Nos.2013CB228206 and 2012CB315801)the National Natural Science Foundation of China(Nos.61233016 and 61140320)supported by the Intel Research Council under the title of"Security Vulnerability Analysis Based on Cloud Platform with Intel IA Architecture"
文摘China Unicorn, the largest WCDMA 3G operator in China, meets the requirements of the historical Mobile Internet Explosion, or the surging of Mobile Internet Traffic from mobile terminals. According to the internal statistics of China Unicom, mobile user traffic has increased rapidly with a Compound Annual Growth Rate (CAGR) of 135%. Currently China Unicorn monthly stores more than 2 trillion records, data volume is over 525 TB, and the highest data volume has reached a peak of 5 PB. Since October 2009, China Unicom has been developing a home-brewed big data storage and analysis platform based on the open source Hadoop Distributed File System (HDFS) as it has a long-term strategy to make full use of this Big Data. All Mobile Internet Traffic is well served using this big data platform. Currently, the writing speed has reached 1 390 000 records per second, and the record retrieval time in the table that contains trillions of records is less than 100 ms. To take advantage of this opportunity to be a Big Data Operator, China Unicom has developed new functions and has multiple innovations to solve space and time constraint challenges presented in data processing. In this paper, we will introduce our big data platform in detail. Based on this big data platform, China Unicom is building an industry ecosystem based on Mobile Internet Big Data, and considers that a telecom operator centric ecosystem can be formed that is critical to reach prosperity in the modern communications business.