期刊文献+
共找到8,170篇文章
< 1 2 250 >
每页显示 20 50 100
NFHP-RN:AMethod of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet
1
作者 Tao Yi Xingshu Chen +2 位作者 Mingdong Yang Qindong Li Yi Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期929-955,共27页
Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to ... Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to extract universal rules for effective detection.With the progress in techniques such as transfer learning and meta-learning,few-shot network attack detection has progressed.However,challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning,difficulties in capturing rich information from original flow in the case of insufficient samples,and the challenge of high-level abstract representation.To address these challenges,a few-shot network attack detection based on NFHP(Network Flow Holographic Picture)-RN(ResNet)is proposed.Specifically,leveraging inherent properties of images such as translation invariance,rotation invariance,scale invariance,and illumination invariance,network attack traffic features and contextual relationships are intuitively represented in NFHP.In addition,an improved RN network model is employed for high-level abstract feature extraction,ensuring that the extracted high-level abstract features maintain the detailed characteristics of the original traffic behavior,regardless of changes in background traffic.Finally,a meta-learning model based on the self-attention mechanism is constructed,achieving the detection of novel APT few-shot network attacks through the empirical generalization of high-level abstract feature representations of known-class network attack behaviors.Experimental results demonstrate that the proposed method can learn high-level abstract features of network attacks across different traffic detail granularities.Comparedwith state-of-the-artmethods,it achieves favorable accuracy,precision,recall,and F1 scores for the identification of unknown-class network attacks through cross-validation onmultiple datasets. 展开更多
关键词 APT attacks spatial pyramid pooling NFHP(network flow holo-graphic picture) ResNet self-attention mechanism META-LEARNING
在线阅读 下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
2
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm Fracture flow Water-sealing effect
在线阅读 下载PDF
A RECOGNITION PROBLEM IN CONVERTING LINEAR PROGRAMMING TO NETWORK FLOW MODELS 被引量:1
3
作者 林诒勋 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第1期76-85,共10页
The main goal of this paper is to study the following combinatorial problem : given a finite set E = (e1, e2, ...,em} and a subset family a - [S1,S2, ... ,Sk} of E , does there exist a tree T with the edge set E such ... The main goal of this paper is to study the following combinatorial problem : given a finite set E = (e1, e2, ...,em} and a subset family a - [S1,S2, ... ,Sk} of E , does there exist a tree T with the edge set E such that each induced subgraph T[Si] of Si is precisely a path (1≤i≤k) ? 展开更多
关键词 Linear Programming network flow Polygon-matrix SEQUENCING Tree.
在线阅读 下载PDF
Cycle Flow Formulation of Optimal Network Flow Problems and Respective Distributed Solutions 被引量:1
4
作者 Reza Asadi Solmaz S.Kia 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1251-1260,共10页
In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum c... In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum cost flow problem and an optimal power flow problem with generation and storage at the nodes to demonstrate our decision variable reduction method.The main advantage of the proposed technique is that it retains the natural sparse/decomposable structure of network flow problems. As such, the reformulated problems are still amenable to distributed solutions. We demonstrate this by proposing a distributed alternating direction method of multipliers(ADMM)solution for a minimum cost flow problem. We also show that the communication cost of the distributed ADMM algorithm for our proposed cycle-based formulation of the minimum cost flow problem is lower than that of a distributed ADMM algorithm for the original arc-based formulation. 展开更多
关键词 ADMM cycle basis distributed optimization optima network flow
在线阅读 下载PDF
Parameter estimation in channel network flow simulation 被引量:1
5
作者 Han Longxi 《Water Science and Engineering》 EI CAS 2008年第1期10-17,共8页
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the paramete... Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China. 展开更多
关键词 hydrodynamic model channel network flow simulation ROUGHNESS
在线阅读 下载PDF
Applying Network Flow Optimization Techniques to Improve Relief Goods Transport Strategies under Emergency Situation 被引量:2
6
作者 Novia Budi Parwanto Hozumi Morohosi Tatsuo Oyama 《American Journal of Operations Research》 2015年第3期95-111,共17页
Given the seriously damaged emergency situation occurring after a large-scale natural disaster, a critical and important problem that needs to be solved urgently is how to distribute the necessary relief goods, such a... Given the seriously damaged emergency situation occurring after a large-scale natural disaster, a critical and important problem that needs to be solved urgently is how to distribute the necessary relief goods, such as drinking water, food, and medicine, to the damaged area and how to transport them corresponding to the actual supply and demand situation as quickly as possible. The existing infrastructure, such as traffic roads, bridges, buildings, and other facilities, may suffer from severe damage. Assuming uncertainty related with each road segment’s availability, we formulate a transshipment network flow optimization problem under various types of uncertain situations. In order to express the uncertainty regarding the availability of each road segment, we apply the Monte Carlo simulation technique to generate random networks following certain probability distribution conditions. Then, we solve the model to obtain an optimal transport strategy for the relief goods. Thus, we try to implement a necessary and desirable response strategy for managing emergency cases caused by, for example, various natural disasters. Our modeling approach was then applied to the actual road network in Sumatra Island in Indonesia in 2009, when a disastrous earthquake occurred to develop effective and efficient public policies for emergency situations. 展开更多
关键词 Natural DISASTER Emergency Uncertainty TRANSSHIPMENT network flow Optimization Problem MONTE Carlo Simulation RELIEF GOODS TRANSPORT Strategy
暂未订购
Multi-Polar Evolution of Global Inventive Talent Flow Network-An Endogenous Migration Model and Empirical Analysis
7
作者 Zheng Jianghuai Sun Dongqing +1 位作者 Dai Wei Shi Lei 《China Economist》 2025年第4期80-100,共21页
The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO... The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO Worldwide Patent Statistical Database(PATSTAT)to extract global inventive talent mobility information and analyzes the spatial structural evolution of the global inventive talent flow network.The study finds that this network is undergoing a multi-polar transformation,characterized by the rising importance of a few central countries-such as the United States,Germany,and China-and the increasing marginalization of many peripheral countries.In response to this typical phenomenon,the paper constructs an endogenous migration model and conducts empirical testing using the Temporal Exponential Random Graph Model(TERGM).The results reveal several endogenous mechanisms driving global inventive talent flows,including reciprocity,path dependence,convergence effects,transitivity,and cyclic structures,all of which contribute to the network’s multi-polar trend.In addition,differences in regional industrial structures significantly influence talent mobility choices and are a decisive factor in the formation of poles within the multi-polar landscape.Based on these findings,it is suggested that efforts be made to foster two-way channels for talent exchange between China and other global innovation hubs,in order to enhance international collaboration and knowledge flow.We should aim to reduce the migration costs and institutional barriers faced by R&D personnel,thereby encouraging greater mobility of high-skilled talent.Furthermore,the government is advised to strategically leverage regional strengths in high-tech industries as a lever to capture competitive advantages in emerging technologies and products,ultimately strengthening the country’s position in the global innovation landscape. 展开更多
关键词 Inventive talent flow network MULTIPOLARITY spatial structural evolution regional industrial structure disparities temporal exponential random graph model(TERGM)
在线阅读 下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
8
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
在线阅读 下载PDF
A new evolutional model for institutional field knowledge flow network
9
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 Knowledge flow networks Evolutionary mechanism BA model Knowledge units
在线阅读 下载PDF
THE APPLICATION OF THE BRANCH AND BOUND METHOD FOR DETERMINING THE MINIMUM FLOW OF A TRANSPORT NETWORK
10
作者 宁宣熙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期45+41-44,共5页
Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity throu... Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples. 展开更多
关键词 network flow graph theory network programming minimum flow blocking flow
在线阅读 下载PDF
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
11
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic flow Neural network LSTM Elevator Group Control
在线阅读 下载PDF
FlowTrust: trust inference with network flows 被引量:3
12
作者 Guojun WANG Jie WU 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第2期181-194,共14页
Web-based social networking is increasingly gaining popularity due to the rapid development of computer networking technologies. However, social networking applications still cannot obtain a wider acceptance by many u... Web-based social networking is increasingly gaining popularity due to the rapid development of computer networking technologies. However, social networking applications still cannot obtain a wider acceptance by many users due to some unresolved issues, such as trust, security, and privacy. In social networks, trust is mainly studied whether a remote user behaves as expected by an interested user via other users, who are respectively named trustee, trustor, and recommenders. A trust graph consists of a trustor, a trustee, some recommenders, and the trust relationships between them. In this paper, we propose a novel FlowTrust approach to model a trust graph with network flows, and evaluate the maximum amount of trust that can flow through a trust graph using network flow theory. FlowTrust supports multi-dimensional trust. We use trust value and confidence level as two trust factors. We deduce four trust metrics from these two trust factors, which are maximum flow of trust value, maximum flow of confidence level, minimum cost of uncertainty with maximum flow of trust, and minimum cost of mistrust with maximum flow of confidence. We also propose three FlowTrust algorithms to normalize these four trust metrics. We compare our proposed FlowTrust approach with the existing RelTrust and CircuitTrust approaches. We show that all three approaches are comparable in terms of the inferred trust values. Therefore, FlowTrust is the best of the three since it also supports multi-dimensional trust. 展开更多
关键词 trust inference multi-dimensional trust approximate algorithm network flows social networks
原文传递
A Note on a Generalized Network Flow Model for Manufacturing Process 被引量:1
13
作者 Hai-yan Lu En-yu Yao Bin-wu Zhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期51-60,共10页
Manufacturing network flow (MNF) is a generalized network model that overcomes the limitation of an ordinary network flow in modeling more complicated manufacturing scenarios, in particular the synthesis of differen... Manufacturing network flow (MNF) is a generalized network model that overcomes the limitation of an ordinary network flow in modeling more complicated manufacturing scenarios, in particular the synthesis of different materials into one product and/or the distilling of one type of material into many different products. Though a network simplex method for solving a simplified version of MNF has been outlined in the literature, more research work is still needed to give a complete answer whether some classical duality and optimality results of the classical network flow problem can be extended in MNF. In this paper, we propose an algorithmic method for obtaining an initial basic feasible solution to start the existing network simplex algorithm, and present a network-based approach to checking the dual feasibility conditions. These results are an extension of those of the ordinary network flow problem. 展开更多
关键词 Minimum. cost network flow network simplex method initial basic feasible solution partiallyordered set extended cycle
原文传递
A LINEAR PROGRAMMING MODEL BASED ON NETWORK FLOW FOR PATHWAY INFERENCE
14
作者 Xianwen REN Xiang-Sun ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期971-977,共7页
Signal transduction pathways play important roles in various biological processes such as cell cycle, apoptosis, proliferation, differentiation and responses to the external stimuli. Efficient computational methods ar... Signal transduction pathways play important roles in various biological processes such as cell cycle, apoptosis, proliferation, differentiation and responses to the external stimuli. Efficient computational methods are of great demands to map signaling pathways systematically based on the interactome and microarray data in the post-genome era. This paper proposes a novel approach to infer the pathways based on the network flow well studied in the operation research. The authors define a potentiality variable for each protein to denote the extent to which it contributes to the objective pathway. And the capacity on each edge is not a constant but a function of the potentiality variables of the corresponding two proteins. The total potentiality of all proteins is given an upper bound. The approach is formulated to a linear programming model and solved by the simplex method. Experiments on the yeast sporulation data suggest this novel approach recreats successfully the backbone of the MAPK signaling pathway with a low upper bound of the total potentiality. By increasing the upper bound, the approach successfully predicts all the members of the Mitogen-activated protein kinases (MAPK) pathway responding to the pheromone. This simple but effective approach can also be used to infer the genetic information processing pathways underlying the expression quantitative trait loci (eQTL) associations, illustrated by the second example. 展开更多
关键词 Gene expression linear programming network flow pathway inference protein interaction network.
原文传递
BLOCKING CUTSET OF A NETWORK AND ITS DETERMINATION (Ⅱ) Research on the Blocking Flow in a Transport Network
15
作者 Ning Xuanxi Industry and Business College, NUAA29 Yudao Street,Nanjing 210016, P. R .China 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第1期100-104,共5页
ransport network in the paper is defined as follows: (1) Connected and directed network without self loop;(2) There is only one source vertex with zero in degree; (3) There is only one sink vertex with zero out de... ransport network in the paper is defined as follows: (1) Connected and directed network without self loop;(2) There is only one source vertex with zero in degree; (3) There is only one sink vertex with zero out degree;(4) The capacity of every arc is non negative integer Blocking flow is a kind of flow commonly happened in a transport network . Its formation is due to the existance of a blocking cutset in the network. In this paper the fundamental concepts and theorems of the blocking flow and the blocking cutset are introduced and a linear programming model for determining the blocking cutset in a network is set up. In order to solve the problem by graph theoretical approach a method called 'two way flow augmenting algorithm' is developed. With this method an iterative procedure of forward and backward flow augmenting process is used to determine whether a given cutset is a blocking one. 展开更多
关键词 graph theory maximum flow network analysis blocking flow network flow
在线阅读 下载PDF
Multi-layer Tectonic Model for Intraplate Deformation and Plastic-Flow Network in the Asian Continental Lithosphere 被引量:4
16
作者 Wang Shengzu Institute of Geology, State Seismological Bureau, Beijing Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1993年第3期247-271,共25页
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c... In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation. 展开更多
关键词 Continental lithosphere tectonic deformation multi-layer tectonic model large-scale seismic belt seismic network plastic flow network
在线阅读 下载PDF
Roles and Functions of Tourism Destinations in Tourism Region of South Anhui:A Tourist Flow Network Perspective 被引量:10
17
作者 LIU Fajian ZHANG Jinhe +3 位作者 ZHANG Jie CHEN Dongdong LIU Zehua LU Song 《Chinese Geographical Science》 SCIE CSCD 2012年第6期755-764,共10页
Theoretic and practical significance has been highlighted in the research of the roles and functions of destinations,as destinations are restricted by the spatial structure based on tourist flow network from the persp... Theoretic and practical significance has been highlighted in the research of the roles and functions of destinations,as destinations are restricted by the spatial structure based on tourist flow network from the perspective of relationship.This article conducted an empirical analysis for Tourism Region of South Anhui(TRSA) and revealed the necessity and feasibility of studying the roles and functions of destinations from tourist flow network's perspective.The automorphic equivalence analysis and centrality analysis were used to classify 16 destinations in TRSA into six role types:tourist flow distribution center,hub of tourist flows,passageway destination,common touring destination,attached touring destination,and nearly isolated destination.Some suggestions were given on suitable infrastructure construction and destinations service designs according to their functions in network.This destination role positioning was based on tourist flow network structure in integral and macroscopic way.It provided an important reference for the balanced and harmonious development of all the destinations of TRSA.In addition,this article verified the applicability of social network analysis on tourist flow research in local scale,and expanded this method to destination role and function positioning. 展开更多
关键词 tourist flow network equivalence model ROLES FUNCTIONS centrality analysis Tourism Region of South Anhui
在线阅读 下载PDF
A Genetic Algorithm to Solve Capacity Assignment Problem in a Flow Network 被引量:6
18
作者 Ahmed Y.Hamed Monagi H.Alkinani M.R.Hassan 《Computers, Materials & Continua》 SCIE EI 2020年第9期1579-1586,共8页
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig... Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach. 展开更多
关键词 flow network capacity assignment network reliability genetic algorithms
在线阅读 下载PDF
RESEARCH ON THE BLOCKING FLOW IN A TRANSPORTATION NETWORK──THE GENERAL CONCEPTS AND THEORY OF THE BLOCKING FLOW 被引量:4
19
作者 Ning Xuanxi (Industry and Business College,NUAA 29 Yudao Street,Nanjing 210016,P.R.China) 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1994年第2期215-223,共9页
Blockage is a kind of phenomenon occurring frequently in modern transportation network. This paper deals with the research work on the blocking now in a network with the help of network flow theory. The blockage pheno... Blockage is a kind of phenomenon occurring frequently in modern transportation network. This paper deals with the research work on the blocking now in a network with the help of network flow theory. The blockage phenomena can be divided intO local blockage and network blockage. In this paper, which deals mainly with the latter, the fundamental concepts and definitions of network blocking flow, blocking outset are presented and the related theorems are proved. It is proved that the sufficient and necessary condition for the emergence of a blocking now in a network is the existence of the blocking outset. The necessary conditions for the existence of the blocking outset in a network are analysed and the characteristic cutset of blockage which reflects the all possible situation of blocking nows in the network is defined.In the last part of the paper the mathematical model of the minimum blocking now is developed and the solution to a small network is given. 展开更多
关键词 network flow network graph THEORY network now PROGRAMMING BLOCKING flow
在线阅读 下载PDF
LLFlowGAN:以生成对抗方式约束可逆流的低照度图像增强 被引量:5
20
作者 黄颖 彭慧 +2 位作者 李昌盛 高胜美 陈奉 《中国图象图形学报》 CSCD 北大核心 2024年第1期65-79,共15页
目的现有低照度图像增强方法大多依赖于像素级重建,旨在学习低照度输入和正常曝光图像之间的确定性映射,没有对复杂的光照分布进行建模,从而导致了不适当的亮度及噪声。大多图像生成方法仅使用一种(显式或隐式)生成模型,在灵活性和效率... 目的现有低照度图像增强方法大多依赖于像素级重建,旨在学习低照度输入和正常曝光图像之间的确定性映射,没有对复杂的光照分布进行建模,从而导致了不适当的亮度及噪声。大多图像生成方法仅使用一种(显式或隐式)生成模型,在灵活性和效率方面有所限制。为此,改进了一种混合显式—隐式的生成模型,该模型允许同时进行对抗训练和最大似然训练。方法首先设计了一个残差注意力条件编码器对低照度输入进行处理,提取丰富的特征以减少生成图像的色差;然后,将编码器提取到的特征作为可逆流生成模型的条件先验,学习将正常曝光图像的分布映射为高斯分布的双向映射,以此来模拟正常曝光图像的条件分布,使模型能够对多个正常曝光结果进行采样,生成多样化的样本;最后,利用隐式生成对抗网络(generative adversarial network,GAN)为模型提供约束,改善图像的细节信息。特别地,两个映射方向都受到损失函数的约束,因此本文设计的模型具有较强的抗模式崩溃能力。结果实验在2个数据集上进行训练与测试,在低照度(low-light dataset,LOL)数据集与其他算法对比,本文算法在峰值信噪比(peak signal-to-noise ratio,PSNR)上均有最优表现、图像感知相似度(learned perceptual image patch similarity,LPIPS)、在结构相似性(structural similarity index measure,SSIM)上取得次优表现0.01,在无参考自然图像质量指标(natural image quality evaluator,NIQE)上取得较优结果。具体地,相较于18种现有显著性模型中的最优值,本文算法PSNR提高0.84 dB,LPIPS降低0.02,SSIM降低0.01,NIQE值降低1.05。在MIT-Adobe FiveK(Massachu-setts Institute of Technology Adobe FiveK)数据集中,与5种显著性模型进行对比,相较于其中的最优值,本文算法PSNR提高0.58 dB,SSIM值取得并列第一。结论本文提出的流生成对抗模型,综合了显式和隐式生成模型的优点,更好地调整了低照度图像的光照,抑制了噪声和伪影,提高了生成图像的视觉感知质量。 展开更多
关键词 低照度图像增强 流模型 生成对抗网络(GAN) 双向映射 复杂光照分布
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部