In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the tar...Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the target function is the accuracy criterion and the constraint conditions are the network’s sensitivity, reliability and observing cost. Meanwhile a new non derivative solution to the nonlinear dynamic optimal design of class two was also put forward. The solving model uses the difference to stand for the first derivative of functions and solves the revised feasible direction to get the optimal solution to unknown parameters. It can not only make the solution to converge on the minimum point of the constraint problem, but decrease the calculating load.展开更多
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c...Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.展开更多
The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed a...The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.展开更多
This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution pro...This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution procedure to solve nonlinear partial differential equation, the Hamilton-Jacobi-Isaacs equation with Successive Galrkin’s Approximation is sketched and validity is proved. According to Lyapunov’s theory, with solutions of the nonlinear PDEs, robust feedback control is designed. To confirm the performance and robustness of the designed controller, numerical and Monte-Carlo simulation results by Simulink software on MATLAB are provided.展开更多
Topology design of artificial neural networks (ANNs) is an important problem for large scale applications. This paper describes a new efficient pruning method, the multi-weight optimal brain surgeon (MWOBS) method...Topology design of artificial neural networks (ANNs) is an important problem for large scale applications. This paper describes a new efficient pruning method, the multi-weight optimal brain surgeon (MWOBS) method, to optimize neural network topologies. The advantages and disadvantages of the OBS and unit-OBS were analyzed to develop the method. Actually, optimized topologies are difficult to get within reasonable times for complex problems. Motivating by the mechanism of natural neurons, the MW-OBS method balances the accuracy and the time complexity to achieve better neural network performance. The method will delete multiple connections among neurons according to the second derivative of the error function, so the arithmetic converges rapidly while the accuracy of the neural network remains high. The stability and generalization ability of the method are illustrated in a Java program. The results show that the MWOBS method has the same accuracy as OBS, but time is similar to that of unit-OBS. Therefore, the MWOBS method can be used to efficiently optimize structures of neural networks for large scale applications.展开更多
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
文摘Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the target function is the accuracy criterion and the constraint conditions are the network’s sensitivity, reliability and observing cost. Meanwhile a new non derivative solution to the nonlinear dynamic optimal design of class two was also put forward. The solving model uses the difference to stand for the first derivative of functions and solves the revised feasible direction to get the optimal solution to unknown parameters. It can not only make the solution to converge on the minimum point of the constraint problem, but decrease the calculating load.
文摘Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.
基金the Scientific Research Foundation for Returned Overseas Chinese Scholars, State EducationCommission.
文摘The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.
文摘This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution procedure to solve nonlinear partial differential equation, the Hamilton-Jacobi-Isaacs equation with Successive Galrkin’s Approximation is sketched and validity is proved. According to Lyapunov’s theory, with solutions of the nonlinear PDEs, robust feedback control is designed. To confirm the performance and robustness of the designed controller, numerical and Monte-Carlo simulation results by Simulink software on MATLAB are provided.
文摘Topology design of artificial neural networks (ANNs) is an important problem for large scale applications. This paper describes a new efficient pruning method, the multi-weight optimal brain surgeon (MWOBS) method, to optimize neural network topologies. The advantages and disadvantages of the OBS and unit-OBS were analyzed to develop the method. Actually, optimized topologies are difficult to get within reasonable times for complex problems. Motivating by the mechanism of natural neurons, the MW-OBS method balances the accuracy and the time complexity to achieve better neural network performance. The method will delete multiple connections among neurons according to the second derivative of the error function, so the arithmetic converges rapidly while the accuracy of the neural network remains high. The stability and generalization ability of the method are illustrated in a Java program. The results show that the MWOBS method has the same accuracy as OBS, but time is similar to that of unit-OBS. Therefore, the MWOBS method can be used to efficiently optimize structures of neural networks for large scale applications.