Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func...Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded co...This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded control inputs.Under the condition that the initial network is connected,the network will be connected all the time and all agents and the virtual leader can attain the same position and move with the same velocity.A simulation example is proposed to illustrate the effective of the proposed algorithm.展开更多
Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and...Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and evaluated the potential clinical value of dFNC changes in combination with a machine learning model.展开更多
Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's func...Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's functional connectivity patterns. The first aim of this study was to investigate FNC alterations between TRD patients and healthy controls. The second aim was to explore the relationship between the ECT treatment response and pre-ECT treatment FNC alterations in individual TRD patients. Methods: This study included 82 TRD patients and 41 controls. Patients were screened at baseline and after 2 weeks of treatment with a combination of ECT and antidepressants. Group information guided-independent component analysis (G1G-ICA) was used to compute subject-specific functional networks (FNs). Grassmann maniibld and step-wise forward component selection using support vector machines were adopted to perform the FNC measure and extract the functional networks' connectivity patterns (FCP). Pearson's correlation analysis was used to calculate the correlations between the FCP and ECT response. Results: A total of 82 TRD patients in the ECT group were successfully treated. On an average, 8.50 ~ 2.00 ECT sessions were conducted. After ECT treatment, only 42 TRD patients had an improved response to ECT (the Hamilton scores reduction rate was more than 50%), response rate 51%. 8 FNs (anterior and posterior default mode network, bilateral frontoparietal network, audio network, visual network, dorsal attention network, and sensorimotor network) were obtained using GIG-ICA. We did not found that FCPs were significantly different between TRD patients and healthy controls. Moreover, the baseline FCP was unrelated to the ECT treatment response. Conclusions: The FNC was not significantly different between the TRD patients and healthy controls, and the baseline FCP was unrelated to the ECT treatment response. These findings will necessitate that we modify the experimental scheme to explore the mechanisms underlying ECT's effects on depression and explore the specific predictors of the effects of ECT based on the pre-ECT treatment magnetic resonance imaging.展开更多
As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, t...As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.展开更多
Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sen...Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sensor network.To deal with such situations,a rapid recovery mechanism is required for restoring inter-node connectivity.Due to the immense importance and need for a recovery mechanism,several different approaches are proposed in the literature.However,the proposed approaches have shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration.Moreover,most of these approaches rely on the excessive mobility of nodes for restoration connectivity that affects both coverage and energy consumption.This paper proposes a novel technique called ECRT(Efficient Connectivity Restoration Technique).This technique is capable of restoring connectivity due to single and multiple node failures.ECRT achieves energy efficiency by transmitting a minimal number of control packets.It is also coverage-aware as it relocates minimal nodes while trying to restore connectivity.With the help of extensive simulations,it is proven that ECRT is effective in connectivity restoration for single and multiple node failures.Results also show that ECRT exchanges a much smaller number of packets than other techniques.Moreover,it also yields the least reduction in field coverage,proving its versatility for connectivity restoration.展开更多
In this paper, the effect of pre-existing discrete fracture network(DFN) connectivity on hydraulic fracturing is numerically investigated in a rock mass subjected to in-situ stress. The simulation results show that DF...In this paper, the effect of pre-existing discrete fracture network(DFN) connectivity on hydraulic fracturing is numerically investigated in a rock mass subjected to in-situ stress. The simulation results show that DFN connectivity has a significant influence on the hydraulic fracture(HF) & DFN interaction and hydraulic fracturing effectiveness, which can be characterized by the total interaction area, stimulated DFN length, stimulated HF length, leak-off ratio, and stimulated total length. In addition, even at the same fluid injection rate, simulation models exhibit different responses that are strongly affected by the DFN connectivity. At a low injection rate, total interaction area decreases with increasing DFN connectivity; at a high injection rate, total interaction area increases with the increase of DFN connectivity. However, for any injection rate, the stimulated DFN length increases and stimulated HF length decreases with the increase of connectivity. Generally, this work shows that the DFN connectivity plays a crucial role in the interaction between hydraulic fractures, the pre-existing natural fractures and hydraulic fracturing effectiveness; in return, these three factors affect treating pressure, created microseismicity and corresponding stimulated volume. This work strongly relates to the production technology and the evaluation of hydraulic fracturing effectiveness. It is helpful for the optimization of hydraulic fracturing simulations in naturally fractured formations.展开更多
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s...BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.展开更多
Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network con...Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.展开更多
Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain f...Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.展开更多
The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippoca...The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.展开更多
In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.T...In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.展开更多
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric...Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.展开更多
Globalization and informatization have accelerated city networking process over the world, which makes research on city network a hot topic in the fields of urban geography and economic geography. With Chinese economi...Globalization and informatization have accelerated city networking process over the world, which makes research on city network a hot topic in the fields of urban geography and economic geography. With Chinese economic structure adjustment and city economic growth, producer services have begun to play an increasingly important role in city-region networking. This paper employs the methodology of world city network to analyze and explain the spatial development characteristics of China's urban network system based on the data of nationwide producer services enterprise network. The research result indicated that the distribution of producer services network has a positive effect on the development of Chinese city networks. City network connectivity is closely related to the significance of city in producer services development, and the former will gradually decline with the drop of the latter. Accordingly, the 64 cities can be divided into the national central cities, regional central cities, sub-regional central cities and local central cities in accordance with their position and role in the nationwide producer services network. It is concluded that high-grade cities with quality producer services dominate the pattern of Chinese city networks and there emerges three spatial agglomerations of producer services enterprises in Changjiang (Yangtze) River Delta, Zhujiang (Pearl) River Delta and Beijing-Tianjin-Tangshan Economical Region. Moreover, the distribution of different producer services industry varies from city to city, which also affects the characteristics of network development.展开更多
Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and ...Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.展开更多
The structure and chemical durability of non-alkali aluminoborosilicate glasses with various contents of ZnO were investigated.As the replacement of MgO by ZnO increases from 0 to 3.2mol%,the average number of bridge ...The structure and chemical durability of non-alkali aluminoborosilicate glasses with various contents of ZnO were investigated.As the replacement of MgO by ZnO increases from 0 to 3.2mol%,the average number of bridge oxygen per tetrahedron (BO/T) as a measure of network connectivity increases from 2.84 to 3.04,and the chemical durability improved.The weight loss ratio (WLR) of glass etched in 10vol% HF (20 ℃,20 min) solution decreased from 4.809 to 4.509,and in 5wt% NaOH (95 ℃,6 h) solution decreased from 1.201 to 0.994.The replacement of MgO by ZnO further increased to 6.4mol%,the value of BO/T decreased to 3.04 instead,and thus the chemical durability deteriorated.The WLR of HF-acid and NaOH-alkali corrosion increased to 6.683 and 1.994,respectively.The chemical durability shows strongly dependent on the network connectivity and exhibits mixed intermediate effects during the replacement of MgO by ZnO.展开更多
Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient ...Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient and strike factor are introduced into the models to quantitatively characterize the connectivity and strike of fracture network,respectively.The influences of fracture aperture,fracture strike and fracture connectivity on the permeability of porous media are studied by using multi-relaxation-time lattice Boltzmann model to simulate fluid flow in them.The greater the strike factor and the smaller the tortuosity of the fractured porous media,the greater the permeability of the fractured porous media.The greater the connectivity coefficient of the fracture network is,the greater the permeability of the fracture-pore media is,and the more likely dominant channel effect occurs.The fracture network connectivity has stronger influence on seepage ability of fracture-pore media than fracture aperture and fracture strike.The tortuosity and strike factor of fracture network in fractured porous media are in polynomial relation,while the permeability and fracture network connectivity coefficient of the fracture-pore media meet an exponential relation.展开更多
Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably impr...Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.展开更多
基金supported by the National Natural Science Foundation of China,No.60905024
文摘Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20181310)the National Natural Science Foundation of China(Grant No.52079039).
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.
文摘This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded control inputs.Under the condition that the initial network is connected,the network will be connected all the time and all agents and the virtual leader can attain the same position and move with the same velocity.A simulation example is proposed to illustrate the effective of the proposed algorithm.
文摘Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and evaluated the potential clinical value of dFNC changes in combination with a machine learning model.
文摘Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's functional connectivity patterns. The first aim of this study was to investigate FNC alterations between TRD patients and healthy controls. The second aim was to explore the relationship between the ECT treatment response and pre-ECT treatment FNC alterations in individual TRD patients. Methods: This study included 82 TRD patients and 41 controls. Patients were screened at baseline and after 2 weeks of treatment with a combination of ECT and antidepressants. Group information guided-independent component analysis (G1G-ICA) was used to compute subject-specific functional networks (FNs). Grassmann maniibld and step-wise forward component selection using support vector machines were adopted to perform the FNC measure and extract the functional networks' connectivity patterns (FCP). Pearson's correlation analysis was used to calculate the correlations between the FCP and ECT response. Results: A total of 82 TRD patients in the ECT group were successfully treated. On an average, 8.50 ~ 2.00 ECT sessions were conducted. After ECT treatment, only 42 TRD patients had an improved response to ECT (the Hamilton scores reduction rate was more than 50%), response rate 51%. 8 FNs (anterior and posterior default mode network, bilateral frontoparietal network, audio network, visual network, dorsal attention network, and sensorimotor network) were obtained using GIG-ICA. We did not found that FCPs were significantly different between TRD patients and healthy controls. Moreover, the baseline FCP was unrelated to the ECT treatment response. Conclusions: The FNC was not significantly different between the TRD patients and healthy controls, and the baseline FCP was unrelated to the ECT treatment response. These findings will necessitate that we modify the experimental scheme to explore the mechanisms underlying ECT's effects on depression and explore the specific predictors of the effects of ECT based on the pre-ECT treatment magnetic resonance imaging.
文摘As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.
基金This research is funded by Jouf University Saudi Arabia,under the research Project Number 40/117.URL:www.ju.edu.sa.
文摘Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sensor network.To deal with such situations,a rapid recovery mechanism is required for restoring inter-node connectivity.Due to the immense importance and need for a recovery mechanism,several different approaches are proposed in the literature.However,the proposed approaches have shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration.Moreover,most of these approaches rely on the excessive mobility of nodes for restoration connectivity that affects both coverage and energy consumption.This paper proposes a novel technique called ECRT(Efficient Connectivity Restoration Technique).This technique is capable of restoring connectivity due to single and multiple node failures.ECRT achieves energy efficiency by transmitting a minimal number of control packets.It is also coverage-aware as it relocates minimal nodes while trying to restore connectivity.With the help of extensive simulations,it is proven that ECRT is effective in connectivity restoration for single and multiple node failures.Results also show that ECRT exchanges a much smaller number of packets than other techniques.Moreover,it also yields the least reduction in field coverage,proving its versatility for connectivity restoration.
基金the National Natural Science Foundation of China(Grant Nos.41227901,41502294&41330643)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000,XDB10030300&XDB10050400)
文摘In this paper, the effect of pre-existing discrete fracture network(DFN) connectivity on hydraulic fracturing is numerically investigated in a rock mass subjected to in-situ stress. The simulation results show that DFN connectivity has a significant influence on the hydraulic fracture(HF) & DFN interaction and hydraulic fracturing effectiveness, which can be characterized by the total interaction area, stimulated DFN length, stimulated HF length, leak-off ratio, and stimulated total length. In addition, even at the same fluid injection rate, simulation models exhibit different responses that are strongly affected by the DFN connectivity. At a low injection rate, total interaction area decreases with increasing DFN connectivity; at a high injection rate, total interaction area increases with the increase of DFN connectivity. However, for any injection rate, the stimulated DFN length increases and stimulated HF length decreases with the increase of connectivity. Generally, this work shows that the DFN connectivity plays a crucial role in the interaction between hydraulic fractures, the pre-existing natural fractures and hydraulic fracturing effectiveness; in return, these three factors affect treating pressure, created microseismicity and corresponding stimulated volume. This work strongly relates to the production technology and the evaluation of hydraulic fracturing effectiveness. It is helpful for the optimization of hydraulic fracturing simulations in naturally fractured formations.
基金Supported by the Medical Research Project of the Chongqing Municipal Health Commission,No.2024WSJK110.
文摘BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.
基金supported by the Guangzhou Municipal Key Discipline in Medicine(2021-2023)the Guangzhou High-level Clinical Key Specialty,the Guangzhou Research-oriented Hospital,the Innovative Clinical Technique of Guangzhou(2024-2026)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(grant number 2022A1515011567,2020A1515110565)the Guangzhou Science,Technology Planning Project(grant number 202201010714,202103000032)the National Natural Science Foundation of China(grant number 82471546)the Guangdong College Students Innovation and Entrepreneurship Training Project(grant number S202310570038)the Guangzhou Health Science and Technology Project(grant number 20231A010038)the Guangzhou Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Technology Project(grant number:20232A010013)the Science and Technology Plan Project of Guangzhou(2023A03J0842).
文摘Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.
基金supported by the National Natural Science Foundation of China(No.81473784)University Science Research Project of Anhui Province of China(No.KJ2017A298)+1 种基金the Key Project of the Youth Elite Support Plan in Universities of Anhui Province of China(No.gxyq ZD2016134)Construction Project of Scientific Research Innovation Platform of Anhui Province of China(No.2015TD033)
文摘Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.
基金supported by the National Natural Science Foundation of China (30825014,81061120529,30970814,81371488,91132727 and 30830046)the Key Program for Clinical Medicine and Science and Technology,Jiangsu Provincial Clinical Medical Research Center,China (BL2013025)
文摘The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under the Grant No.14201621。
文摘In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.
基金supported by the Natural Science Foundation of Shandong Province,ZR2024MH072Open Project of Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province,Xiangnan University,YXZN2022002+2 种基金Projects of Xiamen Scientific and Technological Plan,3502Z20199096 and 3502Z20209220the National Natural Science Foundation of China,61802330the Yantai City Science and Technology Innovation Development Plan,2023XDRH006.
文摘Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.
基金Under the auspices of National Natural Science Foundation of China(No.40971094)
文摘Globalization and informatization have accelerated city networking process over the world, which makes research on city network a hot topic in the fields of urban geography and economic geography. With Chinese economic structure adjustment and city economic growth, producer services have begun to play an increasingly important role in city-region networking. This paper employs the methodology of world city network to analyze and explain the spatial development characteristics of China's urban network system based on the data of nationwide producer services enterprise network. The research result indicated that the distribution of producer services network has a positive effect on the development of Chinese city networks. City network connectivity is closely related to the significance of city in producer services development, and the former will gradually decline with the drop of the latter. Accordingly, the 64 cities can be divided into the national central cities, regional central cities, sub-regional central cities and local central cities in accordance with their position and role in the nationwide producer services network. It is concluded that high-grade cities with quality producer services dominate the pattern of Chinese city networks and there emerges three spatial agglomerations of producer services enterprises in Changjiang (Yangtze) River Delta, Zhujiang (Pearl) River Delta and Beijing-Tianjin-Tangshan Economical Region. Moreover, the distribution of different producer services industry varies from city to city, which also affects the characteristics of network development.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation of China for Distinguished Young ScholarsProjects(61073037,60773013) supported by the National Natural Science Foundation of China
文摘Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.
基金the Nation Key Research and Development Program of China(No.2016YFB0303700)the Hubei Provincial Major Technical Innovation Program of China(No.2017AAA117)the National Natural Science foundation of China(No.51602235)。
文摘The structure and chemical durability of non-alkali aluminoborosilicate glasses with various contents of ZnO were investigated.As the replacement of MgO by ZnO increases from 0 to 3.2mol%,the average number of bridge oxygen per tetrahedron (BO/T) as a measure of network connectivity increases from 2.84 to 3.04,and the chemical durability improved.The weight loss ratio (WLR) of glass etched in 10vol% HF (20 ℃,20 min) solution decreased from 4.809 to 4.509,and in 5wt% NaOH (95 ℃,6 h) solution decreased from 1.201 to 0.994.The replacement of MgO by ZnO further increased to 6.4mol%,the value of BO/T decreased to 3.04 instead,and thus the chemical durability deteriorated.The WLR of HF-acid and NaOH-alkali corrosion increased to 6.683 and 1.994,respectively.The chemical durability shows strongly dependent on the network connectivity and exhibits mixed intermediate effects during the replacement of MgO by ZnO.
基金Supported by the Science and Technology Major Project of PetroChina(2016E-06)National Natural Science Foundation of China(U1562217)。
文摘Based on the comprehensive understanding on microfractures and matrix pores in reservoir rocks,numerical algorithms are used to construct fractured porous media and fracture-pore media models.Connectivity coefficient and strike factor are introduced into the models to quantitatively characterize the connectivity and strike of fracture network,respectively.The influences of fracture aperture,fracture strike and fracture connectivity on the permeability of porous media are studied by using multi-relaxation-time lattice Boltzmann model to simulate fluid flow in them.The greater the strike factor and the smaller the tortuosity of the fractured porous media,the greater the permeability of the fractured porous media.The greater the connectivity coefficient of the fracture network is,the greater the permeability of the fracture-pore media is,and the more likely dominant channel effect occurs.The fracture network connectivity has stronger influence on seepage ability of fracture-pore media than fracture aperture and fracture strike.The tortuosity and strike factor of fracture network in fractured porous media are in polynomial relation,while the permeability and fracture network connectivity coefficient of the fracture-pore media meet an exponential relation.
基金Supported by the Major State Basic Research Development Program of China (973 Program) (2010CB428804) the National Science Foundation ot China (40672172) and the Major Science and Technology Program for Water Pollution Control and Treatment(2009ZX07212-003)
文摘Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.