In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, ...In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, mobile network computers may include not only TV box audio-visual equipment, wireless household appliances, and mobile communication equipment, but may also include devices such as intelligent foot rings, smart watches, smart glasses, smart shoes and smart coats. Considering the different types of networks, e.g. IP multimedia Subsystem(IMS), we explain why some network elements are inaccurate and misleading from a technological perspective. We aim to popularize the concept of mobile network computers for its accuracy and importance, which better define modern mobile terminals and reflects the nature of multiple mobile terminals based on the structure of their integrated computers and the capabilities of processing multimedia. In the computer and Internet age, network computers and mobile network computers are the main terminals of fixed and mobile networks, respectively. Therefore, based on the concept of mobile network computers, we discuss the future of information society.展开更多
Based on the implementation of NNSPC (Neural NetWork Synchronous Parallel Computer) developed by NJU, this paper discusses two schemes for implementing artificial neural network computer withdistributed memories: One ...Based on the implementation of NNSPC (Neural NetWork Synchronous Parallel Computer) developed by NJU, this paper discusses two schemes for implementing artificial neural network computer withdistributed memories: One is Switch Network Structure; the other is Ring Topology Structure. This papergives a comparison betWeen the two schemes and the principles of scheme selection.展开更多
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ...With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.展开更多
Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o...Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.展开更多
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha...BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location ...In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location method for extra high voltage and long distance transmission lines.展开更多
An automobile test controlling and managing system with computer network is introduced. The architecture of the local network, hardware structure, software structure, design of the test process, and error tolerating r...An automobile test controlling and managing system with computer network is introduced. The architecture of the local network, hardware structure, software structure, design of the test process, and error tolerating redundant design in work position substituting are presented. At last, the pivotal questions solved are discussed. With an advanced structure, this system is multi functional and flexible. Furthermore, advanced computer technology is adopted to improve its technical degree.展开更多
Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper,...Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.展开更多
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training dataset...Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.展开更多
Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing ...Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50.展开更多
In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I &a...In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I & H and the Error Back Propagating Model(EBPM) are adopted respectively to simulate the static and dynamic welding control processes. The results of simulation and experiment show that the SILA-I and EBPM have betted properties. The factors affecting the simulating results and the dynamic response quality have also been analyzed.展开更多
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr...Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.展开更多
This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering...This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.展开更多
Any number that can be uniquely determined by a graph is called a graph invariant.During the last twenty years’countless mathematical graph invariants have been characterized and utilized for correlation analysis.How...Any number that can be uniquely determined by a graph is called a graph invariant.During the last twenty years’countless mathematical graph invariants have been characterized and utilized for correlation analysis.However,no reliable examination has been embraced to decide,how much these invariants are related with a network graph or molecular graph.In this paper,it will discuss three different variants of bridge networks with good potential of prediction in the field of computer science,mathematics,chemistry,pharmacy,informatics and biology in context with physical and chemical structures and networks,because k-banhatti sombor invariants are freshly presented and have numerous prediction qualities for different variants of bridge graphs or networks.The study solved the topology of a bridge graph/networks of three different types with two invariants KBanhatti Sombor Indices and its reduced form.These deduced results can be used for the modeling of computer networks like Local area network(LAN),Metropolitan area network(MAN),and Wide area network(WAN),backbone of internet and other networks/structures of computers,power generation,bio-informatics and chemical compounds synthesis.展开更多
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe...The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.展开更多
Purpose:This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network.Design/methodology/approach:This paper investigated the di...Purpose:This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network.Design/methodology/approach:This paper investigated the differences between conference papers and journal papers in the field of computer science based on Bayesian network,a knowledge-representative framework that can model relationships among all variables in the network.We defined the variables required for Bayesian networks modeling,calculated the values of each variable based Aminer dataset(a literature data set in the field of computer science),learned the Bayesian network and derived some findings based on network inference.Findings:The study found that conferences are more attractive to senior scholars,the academic impact of conference papers is slightly higher than journal papers,and it is uncertain whether conference papers are more innovative than journal papers.Research limitations:The study was limited to the field of computer science and employed Aminer dataset as the sample.Further studies involving more diverse datasets and different fields could provide a more complete picture of the matter.Practical implications:By demonstrating that Bayesian networks can effectively analyze issues in Scientometrics,the study offers valuable insights that may enhance researchers’understanding of the differences between journal and conference in computer science.Originality/value:Academic conferences play a crucial role in facilitating scholarly exchange and knowledge dissemination within the field of computer science.Several studies have been conducted to examine the distinctions between conference papers and journal papers in terms of various factors,such as authors,citations,h-index and others.Those studies were carried out from different(independent)perspectives,lacking a systematic examination of the connections and interactions between multiple perspectives.This paper supplements this deficiency based on Bayesian network modeling.展开更多
This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development conditi...This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development condition of a mining area, were brought forward, and the system evaluation was given.展开更多
文摘In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, mobile network computers may include not only TV box audio-visual equipment, wireless household appliances, and mobile communication equipment, but may also include devices such as intelligent foot rings, smart watches, smart glasses, smart shoes and smart coats. Considering the different types of networks, e.g. IP multimedia Subsystem(IMS), we explain why some network elements are inaccurate and misleading from a technological perspective. We aim to popularize the concept of mobile network computers for its accuracy and importance, which better define modern mobile terminals and reflects the nature of multiple mobile terminals based on the structure of their integrated computers and the capabilities of processing multimedia. In the computer and Internet age, network computers and mobile network computers are the main terminals of fixed and mobile networks, respectively. Therefore, based on the concept of mobile network computers, we discuss the future of information society.
文摘Based on the implementation of NNSPC (Neural NetWork Synchronous Parallel Computer) developed by NJU, this paper discusses two schemes for implementing artificial neural network computer withdistributed memories: One is Switch Network Structure; the other is Ring Topology Structure. This papergives a comparison betWeen the two schemes and the principles of scheme selection.
基金supported by the National Natural Science Foundation of China(Nos.52373093 and 12072325)the Outstanding Youth Fund of Henan Province(No.242300421062)+1 种基金National Key R&D Program of China(No.2019YFA0706802)the 111 project(No.D18023).
文摘With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.
基金supported in part by the National Natural Science Foundation of China under Grant 52307134the Fundamental Research Funds for the Central Universities(xzy012025022)。
文摘Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.
基金Supported by Key Research and Development Program of Shaanxi Province,China,No.2024SF-YBXM-078.
文摘BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
文摘In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location method for extra high voltage and long distance transmission lines.
文摘An automobile test controlling and managing system with computer network is introduced. The architecture of the local network, hardware structure, software structure, design of the test process, and error tolerating redundant design in work position substituting are presented. At last, the pivotal questions solved are discussed. With an advanced structure, this system is multi functional and flexible. Furthermore, advanced computer technology is adopted to improve its technical degree.
文摘Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.
基金We are grateful for financial supports from National Natural Science Foundation of China(62035003,61775117)China Postdoctoral Science Foundation(BX2021140)Tsinghua University Initiative Scientific Research Program(20193080075).
文摘Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.
文摘Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50.
文摘In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I & H and the Error Back Propagating Model(EBPM) are adopted respectively to simulate the static and dynamic welding control processes. The results of simulation and experiment show that the SILA-I and EBPM have betted properties. The factors affecting the simulating results and the dynamic response quality have also been analyzed.
基金Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.
文摘This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdul-Aziz University,Jeddah,Saudi Arabia under Grant No.(RG-11-611-43).
文摘Any number that can be uniquely determined by a graph is called a graph invariant.During the last twenty years’countless mathematical graph invariants have been characterized and utilized for correlation analysis.However,no reliable examination has been embraced to decide,how much these invariants are related with a network graph or molecular graph.In this paper,it will discuss three different variants of bridge networks with good potential of prediction in the field of computer science,mathematics,chemistry,pharmacy,informatics and biology in context with physical and chemical structures and networks,because k-banhatti sombor invariants are freshly presented and have numerous prediction qualities for different variants of bridge graphs or networks.The study solved the topology of a bridge graph/networks of three different types with two invariants KBanhatti Sombor Indices and its reduced form.These deduced results can be used for the modeling of computer networks like Local area network(LAN),Metropolitan area network(MAN),and Wide area network(WAN),backbone of internet and other networks/structures of computers,power generation,bio-informatics and chemical compounds synthesis.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.
基金The work of this paper is supported by the Chinese Academy of Sciences Literature and Information capacity building project,Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2019176).
文摘Purpose:This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network.Design/methodology/approach:This paper investigated the differences between conference papers and journal papers in the field of computer science based on Bayesian network,a knowledge-representative framework that can model relationships among all variables in the network.We defined the variables required for Bayesian networks modeling,calculated the values of each variable based Aminer dataset(a literature data set in the field of computer science),learned the Bayesian network and derived some findings based on network inference.Findings:The study found that conferences are more attractive to senior scholars,the academic impact of conference papers is slightly higher than journal papers,and it is uncertain whether conference papers are more innovative than journal papers.Research limitations:The study was limited to the field of computer science and employed Aminer dataset as the sample.Further studies involving more diverse datasets and different fields could provide a more complete picture of the matter.Practical implications:By demonstrating that Bayesian networks can effectively analyze issues in Scientometrics,the study offers valuable insights that may enhance researchers’understanding of the differences between journal and conference in computer science.Originality/value:Academic conferences play a crucial role in facilitating scholarly exchange and knowledge dissemination within the field of computer science.Several studies have been conducted to examine the distinctions between conference papers and journal papers in terms of various factors,such as authors,citations,h-index and others.Those studies were carried out from different(independent)perspectives,lacking a systematic examination of the connections and interactions between multiple perspectives.This paper supplements this deficiency based on Bayesian network modeling.
文摘This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development condition of a mining area, were brought forward, and the system evaluation was given.