Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a...Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.展开更多
Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t...Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.展开更多
The paper presents a web based vision system using a networked IP camera for tracking objects of interest. Three critical issues are addressed in this paper. First is the detection of moving objects in the foreground;...The paper presents a web based vision system using a networked IP camera for tracking objects of interest. Three critical issues are addressed in this paper. First is the detection of moving objects in the foreground;second is the control of pan-tilt-zoom (PTZ) IP cameras based on object location;and third is the collaboration of multiple cameras over the network to track objects of interests independently. The developed system utilized a network of PTZ cameras along with a number of software tools for this implementation. The system was able to track a single and multiple objects successfully. The difficulties in the detection of moving objects are also analyzed while multiple cameras are collaborating over a network utilizing PTZ cameras.展开更多
A novel framework for remote service discovery and access of IP cameras with Network address Translation (NAT) traversal is presented in this paper. The proposed protocol, termed STDP (Service Trader Discovery Protoco...A novel framework for remote service discovery and access of IP cameras with Network address Translation (NAT) traversal is presented in this paper. The proposed protocol, termed STDP (Service Trader Discovery Protocol), is a hybrid combination of Zeroconf and SIP (Session Initial Protocol). The Zeroconf is adopted for the discovery and/or publication of local services;whereas, the SIP is used for the delivery of local services to the remote nodes. In addition, both the SIP-ALG (Application Layer Gateway) and UPnP (Universal Plug and Play)-IGD (Internet Gateway Device) protocols are used for NAT traversal. The proposed framework is well-suited for high mobility applications where the fast deployment and low administration efforts of IP cameras are desired.展开更多
One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If ...One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If the relationship between the space and the image plane is assumed to be linear, the relationship can be expressed in terms of a transfor-mation matrix and the matrix is often identified by regression. In this paper, we show that the space-to-image relation-ship in a camera can be modeled by a simple neural network. Unlike most other cases employing neural networks, the structure of the network is optimized so as for each link between neurons to have a physical meaning. This makes it possible to effectively initialize link weights and quickly train the network.展开更多
经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机...经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机替代导航系统中双目红外相机,采用一种基于神经网络的无标志物TMS线圈机器人辅助定位方法。搭建神经网络实现相机空间线圈姿态到操作臂空间关节角度的映射,并通过仿真数据训练验证了该神经网络架构适用于TMS线圈位姿摆放问题。随后,通过实验验证了该方法的可行性,同时表明训练的神经网络针对TMS线圈定位任务具有良好的泛化能力。最后,在笛卡儿空间的位姿验证结果显示TMS线圈三维位置平均误差为2.16 mm,总体姿态误差为0.055 rad,使用RGB相机的TMS线圈机器人辅助定位系统在精度上达到了与其他使用双目红外相机的科研或商用系统相同的水平,满足TMS临床治疗要求,具备临床应用的可行性。展开更多
基金supported by the National Natural Science Foundationof China(61100207)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2014BAK14B03)+1 种基金the Fundamental Research Funds for the Central Universities(2013PT132013XZ12)
文摘Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.
基金National Natural Science Foundation of China(No.41701534)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(No.SKLCRSM19KFA01)+1 种基金Ecological and Smart Mine Joint Foundation of Hebei Province(No.E2020402086)State Key Laboratory ofGeohazard Prevention and Geoenvironment Protection(No.SKLGP2019K015)
文摘Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.
文摘The paper presents a web based vision system using a networked IP camera for tracking objects of interest. Three critical issues are addressed in this paper. First is the detection of moving objects in the foreground;second is the control of pan-tilt-zoom (PTZ) IP cameras based on object location;and third is the collaboration of multiple cameras over the network to track objects of interests independently. The developed system utilized a network of PTZ cameras along with a number of software tools for this implementation. The system was able to track a single and multiple objects successfully. The difficulties in the detection of moving objects are also analyzed while multiple cameras are collaborating over a network utilizing PTZ cameras.
文摘A novel framework for remote service discovery and access of IP cameras with Network address Translation (NAT) traversal is presented in this paper. The proposed protocol, termed STDP (Service Trader Discovery Protocol), is a hybrid combination of Zeroconf and SIP (Session Initial Protocol). The Zeroconf is adopted for the discovery and/or publication of local services;whereas, the SIP is used for the delivery of local services to the remote nodes. In addition, both the SIP-ALG (Application Layer Gateway) and UPnP (Universal Plug and Play)-IGD (Internet Gateway Device) protocols are used for NAT traversal. The proposed framework is well-suited for high mobility applications where the fast deployment and low administration efforts of IP cameras are desired.
文摘One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., mapping a point in three-dimensional space to its projected position on the camera’s image plane. If the relationship between the space and the image plane is assumed to be linear, the relationship can be expressed in terms of a transfor-mation matrix and the matrix is often identified by regression. In this paper, we show that the space-to-image relation-ship in a camera can be modeled by a simple neural network. Unlike most other cases employing neural networks, the structure of the network is optimized so as for each link between neurons to have a physical meaning. This makes it possible to effectively initialize link weights and quickly train the network.