[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a...[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering.展开更多
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ...The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.展开更多
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym...Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.展开更多
The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only...The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only used for limited cases.In this letter,we propose Kolmogorov-Arnold networks(KAN)base models for wavenumber-frequency spectra of pressure fluctuations under turbulent boundary layers.The results are compared with DNS results.In turbulent channel flows,it is found that the KAN base model leads to a smooth wavenumber-frequency spectrum with sparse samples.In the turbulent flow over an axisymmetric body of revolution,the KAN base model captures the wavenumber-frequency spectra near the convective peak.展开更多
Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at...Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predi...In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment.展开更多
In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigat...In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigates the performance of ML methods when predicting different measures of stock returns from various factor models and investigates the feature importance and interaction effects among firm-specific variables and macroeconomic factors in this context.Our findings reveal that neural network models exhibit consistent performance across different stock return measures when they rely solely on firm-specific characteristic variables.However,the inclusion of macroeconomic factors from the financial market,real economic activities,and investor sentiment leads to substantial improvements in the model performance.Notably,the degree of improvement varies with the specific measures of stock returns under consideration.Furthermore,our analysis indicates that,after the inclusion of macroeconomic factors,there is a dissimilarity in model performance,variable importance,and interaction effects among macroeconomic and firm-specific variables,particularly concerning abnormal returns derived from the Fama–French three-and five-factor models compared with excess returns.This divergence is primarily attributed to the extent to which these factor models remove the variance associated with the macroeconomic variables.These findings collectively offer valuable insights into the efficacy of neural network models for stock return predictions and contribute to a deeper understanding of the intricate relationship between factor models,stock returns,and macroeconomic conditions in the domain of empirical asset pricing.展开更多
Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design ...Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is...Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is crucial for CBM development.This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals.It shows that the porosity is 7.04%-8.47%and 10.88%-12.11%,and the pore connectivity is 0.5422-0.6852 and 0.7948-0.9186 for coal samples 1 and 2,respectively.The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure.The results show that the pore structure of sample 2 is more complex and developed,with lower tortuosity,indicating the higher fluid deliverability of pore system in sample 2.The tortuosity in three-direction is significantly different,indicating that the pore structure of the studied coals has significant anisotropy.The equivalent pore network model(PNM)was extracted,and the anisotropic permeability was estimated by PNM gas flow simulation.The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure.The permeability in the horizontal direction is much greater than that in the vertical direction,indicating that the dominant transportation channel is along the horizontal direction of the studied coals.The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size,connectivity,curvature,permeability,and its anisotropic characteristics at micron-scale resolution.This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas...With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.展开更多
Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the ...Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.展开更多
As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with h...As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.展开更多
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch...This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.展开更多
Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amoun...Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability.展开更多
基金supported by the Hebei Provincial Key Research and Development Project(21372803D)。
文摘[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering.
基金The National Key R&D Program,Grant/Award Number:2023YFC2907203National Natural Science Foundation of China,Grant/Award Numbers:52374121,52074121。
文摘The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.
基金supported by the National Natural Science Foundation of China(Grant Nos.12202339 and 12172273)Xi’an Jiaotong University Tang Scholar.
文摘Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.
基金supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102)the National Natural Science Foundation of China(Grant Nos.92252203,12102439,and 12425207)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-087)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0620102).
文摘The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only used for limited cases.In this letter,we propose Kolmogorov-Arnold networks(KAN)base models for wavenumber-frequency spectra of pressure fluctuations under turbulent boundary layers.The results are compared with DNS results.In turbulent channel flows,it is found that the KAN base model leads to a smooth wavenumber-frequency spectrum with sparse samples.In the turbulent flow over an axisymmetric body of revolution,the KAN base model captures the wavenumber-frequency spectra near the convective peak.
文摘Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金Supported by National Natural Science Foundation of China(Grant No.51805447)Natural Science Foundation of Jiangsu Higher Education of China(Grant No.22KJB460010)+2 种基金Jiangsu Provincial Innovation and Promotion Project of Forestry Science and Technology of China(Grant No.LYKJ[2023]06)Yangzhou Science and Technology Plan(City School Cooperation Project)of China(Grant No.YZ2022193)Cyan Blue Project of Yangzhou University of China。
文摘In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment.
文摘In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigates the performance of ML methods when predicting different measures of stock returns from various factor models and investigates the feature importance and interaction effects among firm-specific variables and macroeconomic factors in this context.Our findings reveal that neural network models exhibit consistent performance across different stock return measures when they rely solely on firm-specific characteristic variables.However,the inclusion of macroeconomic factors from the financial market,real economic activities,and investor sentiment leads to substantial improvements in the model performance.Notably,the degree of improvement varies with the specific measures of stock returns under consideration.Furthermore,our analysis indicates that,after the inclusion of macroeconomic factors,there is a dissimilarity in model performance,variable importance,and interaction effects among macroeconomic and firm-specific variables,particularly concerning abnormal returns derived from the Fama–French three-and five-factor models compared with excess returns.This divergence is primarily attributed to the extent to which these factor models remove the variance associated with the macroeconomic variables.These findings collectively offer valuable insights into the efficacy of neural network models for stock return predictions and contribute to a deeper understanding of the intricate relationship between factor models,stock returns,and macroeconomic conditions in the domain of empirical asset pricing.
基金supported by the National Natural Science Foundation of China(Grant No.12172125)the Science Foundation of Hunan Province(Grant No.2022JJ30119).
文摘Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金This work was supported by the National Natural Science Foundation of China(52204206,52274246)the Open Fund Project Funded by State Key Laboratory of Gas Disaster Detecting,Preventing and Emergency Controlling(2021SKLFF03)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX1149).
文摘Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is crucial for CBM development.This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals.It shows that the porosity is 7.04%-8.47%and 10.88%-12.11%,and the pore connectivity is 0.5422-0.6852 and 0.7948-0.9186 for coal samples 1 and 2,respectively.The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure.The results show that the pore structure of sample 2 is more complex and developed,with lower tortuosity,indicating the higher fluid deliverability of pore system in sample 2.The tortuosity in three-direction is significantly different,indicating that the pore structure of the studied coals has significant anisotropy.The equivalent pore network model(PNM)was extracted,and the anisotropic permeability was estimated by PNM gas flow simulation.The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure.The permeability in the horizontal direction is much greater than that in the vertical direction,indicating that the dominant transportation channel is along the horizontal direction of the studied coals.The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size,connectivity,curvature,permeability,and its anisotropic characteristics at micron-scale resolution.This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
文摘With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.
基金the Project of the Key Open Laboratory of Atmospheric Detection,China Meteorological Administration(2023KLAS02M)the Second Batch of Science and Technology Project of China Meteorological Administration("Jiebangguashuai"):the Research and Development of Short-term and Near-term Warning Products for Severe Convective Weather in Beijing-Tianjin-Hebei Region(CMAJBGS202307).
文摘Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.
基金supported by the Program of Support Xinjiang by Technology(2024E02028,B2-2024-0359)Xinjiang Tianchi Talent Program of 2024,the Foundation of Chinese Academy of Sciences(B2-2023-0239)the Youth Foundation of Shandong Natural Science(ZR2023QD070).
文摘As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.
文摘This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.
基金This project is sponsored by National Natural Science Foundation of China, No. 40574030.
文摘Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability.