Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques.In this paper,we treat conditional expectation as a function of the multidimensional conditi...Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques.In this paper,we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general nonparametric least squared estimators on sieve,without imposing specific assumptions on the function’s form.Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression.We use kernel ridge regression with inducing points and neural networks as examples to illustrate our theorems.Numerical experiments are conducted to support our statements.展开更多
Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高...为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高的分辨力,而且提高了目标波达方向(direction of arrival,DOA)估计的精度。并利用基于Khatri-Rao积的空间平滑酉旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法进行DOA估计。其先对协方差矩阵向量化提高自由度,然后利用空间平滑对新数据协方差矩阵进行秩恢复,最后使用双尺度酉ESPRIT算法得到DOA估计。仿真结果证明所提方法的有效性。展开更多
文摘Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques.In this paper,we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general nonparametric least squared estimators on sieve,without imposing specific assumptions on the function’s form.Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression.We use kernel ridge regression with inducing points and neural networks as examples to illustrate our theorems.Numerical experiments are conducted to support our statements.
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
文摘为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高的分辨力,而且提高了目标波达方向(direction of arrival,DOA)估计的精度。并利用基于Khatri-Rao积的空间平滑酉旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法进行DOA估计。其先对协方差矩阵向量化提高自由度,然后利用空间平滑对新数据协方差矩阵进行秩恢复,最后使用双尺度酉ESPRIT算法得到DOA估计。仿真结果证明所提方法的有效性。