The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper ...Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.展开更多
Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the inp...Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.展开更多
A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), w...A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.展开更多
A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch...A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software d...The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software design are proposed. The method increases measuring precision and has fairly great practicability.展开更多
A new high order CMOS temperature compensated current reference is proposed in this paper, which is accomplished by two first order temperature compensation current references. The novel circuit exploits the temperatu...A new high order CMOS temperature compensated current reference is proposed in this paper, which is accomplished by two first order temperature compensation current references. The novel circuit exploits the temperature characteristics of integrated-circuit resistors and gate-source voltage of MOS transistors working in weak inversion. The proposed circuit, designed with a 0.6 Izm standard CMOS technology, gives a good temperature coefficient of 31ppm/℃ [-50-100℃] at a 1.8V supply, and also achieves line regulation of 0.01%/V and-120dB PSR at 1 MHz. Comparing with other presented work, the proposed circuit shows better temperature coefficient and Line regulation.展开更多
An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we...An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we have developed a simple response compensation scheme based on a precise theoretical expression for the frequency response of the CCA (Kaifuku et al. 2010, 2011), and verified its effectiveness experimentally for hot-wires of 5 μm, 10 μm and 20 μm in diameter. Then, another novel technique based on a two-sensor probe technique—originally developed for the response compensation of fine-wire thermocouples (Tagawa and Ohta 1997;Tagawa et al. 1998)—has been proposed for estimating thermal time-constants of hot-wires to realize the in-situ response compensation of the CCA. To demonstrate the usefulness of the CCA, we have applied the response compensation schemes to multipoint velocity measure- ment of a turbulent wake flow formed behind a circular cylinder by using a CCA probe consisting of 16 hot-wires, which were driven simultaneously by a very simple constant-current circuit. As a result, the proposed response compensation techniques for the CCA work quite successfully and are capable of improving the response speed of the CCA to obtain reliable measurements comparable to those by the commercially-available constant-temperature hot-wire anemometer (CTA).展开更多
Because variations of ultra-capacitor voltage and battery voltage generate subharmonic and chaotic behaviors in hybrid energy storage system (HESS) application when a DC-DC converter is under the peak current control,...Because variations of ultra-capacitor voltage and battery voltage generate subharmonic and chaotic behaviors in hybrid energy storage system (HESS) application when a DC-DC converter is under the peak current control, a novel digital control strategy, i.e., peak current control with extended-state tracking compensator, is introduced to deal with the stability. The gains of the control algorithm are selected based on pole locations formulated from the Bessel filter. The simulation results validate that under the peak current control strategy with compensator, the DC-DC converter does not have the subharmonic and chaotic behaviors. The response time under the peak current control with compensator is the same as that under the peak current control. The ripple voltage and ripple current of battery are less. The tracking error of inductor current tends to zero.展开更多
A new bipolar temperature-compensated current reference is proposed. The first-order temperature compensation is achieved by the idea of self temperature-compensation configuration exploiting the temperature coefficie...A new bipolar temperature-compensated current reference is proposed. The first-order temperature compensation is achieved by the idea of self temperature-compensation configuration exploiting the temperature coefficient of a combined resistor. The second-order compensation employs a VBE-tracking thermal-startup technique to obtain improved temperature performance. The proposed circuit can operate down to a 1-V supply. A temperature coefficient of 46.6×10?6/℃ [0, 100℃] at a 1-V supply and a supply regulation of 0.036%/V at 25℃ are achieved. Compared with present works, the proposed circuit shows better results of the temperature coefficient and supply regulation. The current matching issue frequently encountered in current references is also discussed in detail.展开更多
The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW...The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on th...The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.展开更多
In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due t...In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.展开更多
With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current me...With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.展开更多
A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp...A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp bipolar transistor. The proposed circuit, designed in a standard 0.18 μm CMOS process, achieves a good temperature coefficient of 2.44 ppm/℃ with temperature range from --40℃ to 85 ℃, and about 4 mV supply voltage variation in the range from 1.4 V to 2.4 V. With a 1.8 V supply voltage, the power supply rejection ratio is -56dB at 10MHz.展开更多
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of ...A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.
基金supported by the key technology project of China Southern Power Grid Corporation(GZKJXM20220041)partly by theNational Key Research and Development Plan(2022YFE0205300).
文摘Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.
文摘Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.
基金Project supported by Shanghai Leading Academic DisciplineProject (Grant No .T0103) ,and Shanghai Post Doctoral Scienti-fic Research (Grant No .05R214122)
文摘A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.
文摘A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
文摘The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software design are proposed. The method increases measuring precision and has fairly great practicability.
文摘A new high order CMOS temperature compensated current reference is proposed in this paper, which is accomplished by two first order temperature compensation current references. The novel circuit exploits the temperature characteristics of integrated-circuit resistors and gate-source voltage of MOS transistors working in weak inversion. The proposed circuit, designed with a 0.6 Izm standard CMOS technology, gives a good temperature coefficient of 31ppm/℃ [-50-100℃] at a 1.8V supply, and also achieves line regulation of 0.01%/V and-120dB PSR at 1 MHz. Comparing with other presented work, the proposed circuit shows better temperature coefficient and Line regulation.
文摘An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we have developed a simple response compensation scheme based on a precise theoretical expression for the frequency response of the CCA (Kaifuku et al. 2010, 2011), and verified its effectiveness experimentally for hot-wires of 5 μm, 10 μm and 20 μm in diameter. Then, another novel technique based on a two-sensor probe technique—originally developed for the response compensation of fine-wire thermocouples (Tagawa and Ohta 1997;Tagawa et al. 1998)—has been proposed for estimating thermal time-constants of hot-wires to realize the in-situ response compensation of the CCA. To demonstrate the usefulness of the CCA, we have applied the response compensation schemes to multipoint velocity measure- ment of a turbulent wake flow formed behind a circular cylinder by using a CCA probe consisting of 16 hot-wires, which were driven simultaneously by a very simple constant-current circuit. As a result, the proposed response compensation techniques for the CCA work quite successfully and are capable of improving the response speed of the CCA to obtain reliable measurements comparable to those by the commercially-available constant-temperature hot-wire anemometer (CTA).
基金Research Fund on the Cutting-Edge Technology of Electrical Vehicles towards the Sino-US clean Energy Cooperation
文摘Because variations of ultra-capacitor voltage and battery voltage generate subharmonic and chaotic behaviors in hybrid energy storage system (HESS) application when a DC-DC converter is under the peak current control, a novel digital control strategy, i.e., peak current control with extended-state tracking compensator, is introduced to deal with the stability. The gains of the control algorithm are selected based on pole locations formulated from the Bessel filter. The simulation results validate that under the peak current control strategy with compensator, the DC-DC converter does not have the subharmonic and chaotic behaviors. The response time under the peak current control with compensator is the same as that under the peak current control. The ripple voltage and ripple current of battery are less. The tracking error of inductor current tends to zero.
文摘A new bipolar temperature-compensated current reference is proposed. The first-order temperature compensation is achieved by the idea of self temperature-compensation configuration exploiting the temperature coefficient of a combined resistor. The second-order compensation employs a VBE-tracking thermal-startup technique to obtain improved temperature performance. The proposed circuit can operate down to a 1-V supply. A temperature coefficient of 46.6×10?6/℃ [0, 100℃] at a 1-V supply and a supply regulation of 0.036%/V at 25℃ are achieved. Compared with present works, the proposed circuit shows better results of the temperature coefficient and supply regulation. The current matching issue frequently encountered in current references is also discussed in detail.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120030).
文摘The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371033)the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.142027)+1 种基金the Sichuan Provincial Youth Science and Technology Fund,China(Grant Nos.2014JQ0015and 2013JQ0033)the Fundamental Research Funds for the Central Universities,China(Grant No.SWJTU11CX029)
文摘The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.
文摘In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.
文摘With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.
文摘A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp bipolar transistor. The proposed circuit, designed in a standard 0.18 μm CMOS process, achieves a good temperature coefficient of 2.44 ppm/℃ with temperature range from --40℃ to 85 ℃, and about 4 mV supply voltage variation in the range from 1.4 V to 2.4 V. With a 1.8 V supply voltage, the power supply rejection ratio is -56dB at 10MHz.
基金Supported by the National Natural Science Foundation of China(61604109)the National High-Tech R&D Program of China(2015AA042605)
文摘A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.