阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood...阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.展开更多
为了有效地发现复杂网络中的重叠社区结构,引入了密度峰值聚类算法,但将此算法应用于社区发现还存在如何度量节点间距离、如何产生重叠划分结果等问题。为此提出了一种基于节点局部相似性的两阶段密度峰值重叠社区发现方法(Node Local S...为了有效地发现复杂网络中的重叠社区结构,引入了密度峰值聚类算法,但将此算法应用于社区发现还存在如何度量节点间距离、如何产生重叠划分结果等问题。为此提出了一种基于节点局部相似性的两阶段密度峰值重叠社区发现方法(Node Local Similarity Based Two-stage Density Peaks Algorithm for Overlapping Community Detection,LSDPC)。该方法结合大度节点有利指标和连接贡献度定义了一种新的节点局部相似性指标,首先通过节点局部相似性度量节点距离;然后通过节点的局部密度和最小距离计算节点中心值,利用切比雪夫不等式筛选出社区中心节点;最后经过初次划分与重叠划分两阶段得到最终的重叠社区划分结果。在真实网络数据集与合成网络数据集上的实验结果表明,所提算法可以有效发现重叠社区结构,且结果优于其他对比算法。展开更多
文摘阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.
文摘为了有效地发现复杂网络中的重叠社区结构,引入了密度峰值聚类算法,但将此算法应用于社区发现还存在如何度量节点间距离、如何产生重叠划分结果等问题。为此提出了一种基于节点局部相似性的两阶段密度峰值重叠社区发现方法(Node Local Similarity Based Two-stage Density Peaks Algorithm for Overlapping Community Detection,LSDPC)。该方法结合大度节点有利指标和连接贡献度定义了一种新的节点局部相似性指标,首先通过节点局部相似性度量节点距离;然后通过节点的局部密度和最小距离计算节点中心值,利用切比雪夫不等式筛选出社区中心节点;最后经过初次划分与重叠划分两阶段得到最终的重叠社区划分结果。在真实网络数据集与合成网络数据集上的实验结果表明,所提算法可以有效发现重叠社区结构,且结果优于其他对比算法。