期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
1
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
2
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
在线阅读 下载PDF
AN EFFICIENT FAST ENCODING ALGORITHM FOR VECTOR QUANTIZATION 被引量:1
3
作者 徐润生 陆哲明 +1 位作者 许晓鸣 张卫东 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期23-27,32,共6页
A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates... A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates and the other contains the remaining coordinates. Three inequalities based on the characteristics of the sums and variances of a vector and its two subvectors were introduced to reject those codewords which are impossible to be the nearest codeword. The simulation results show that the proposed algorithm is faster than the improved equal average eaual variance nearest neighbor search (EENNS) algorithm. 展开更多
关键词 VECTOR QUANTIZATION nearest neighbor search equal AVERAGE nearest neighbor search algorithm equal AVERAGE equal variance nearest neighbor search algorithm Document code:A
在线阅读 下载PDF
Efficient κ-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories 被引量:4
4
作者 高云君 李春 +3 位作者 陈根才 陈岭 姜贤塔 陈纯 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第2期232-244,共13页
Nearest Neighbor (κNN) search is one of the most important operations in spatial and spatio-temporal databases. Although it has received considerable attention in the database literature, there is little prior work... Nearest Neighbor (κNN) search is one of the most important operations in spatial and spatio-temporal databases. Although it has received considerable attention in the database literature, there is little prior work on κNN retrieval for moving object trajectories. Motivated by this observation, this paper studies the problem of efficiently processing κNN (κ≥ 1) search on R-tree-like structures storing historical information about moving object trajectories. Two algorithms are developed based on best-first traversal paradigm, called BFPκNN and BFTκNN, which handle the κNN retrieval with respect to the static query point and the moving query trajectory, respectively. Both algorithms minimize the number of node access, that is, they perform a single access only to those qualifying nodes that may contain the final result. Aiming at saving main-memory consumption and reducing CPU cost further, several effective pruning heuristics are also presented. Extensive experiments with synthetic and real datasets confirm that the proposed algorithms in this paper outperform their competitors significantly in both efficiency and scalability. 展开更多
关键词 query processing κ-nearest-neighbor search moving object trajectories algorithmS spatio-temporal databases
原文传递
基于点云的发动机叶片损伤体积测量方法
5
作者 魏永超 刘家伟 +2 位作者 莫杜衡 岳雨琛 蔡双 《制造技术与机床》 北大核心 2025年第1期188-195,共8页
针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分... 针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分析、分层、切片、投影得到二维点云轮廓。最后,提出单向双次最近邻点搜索算法对二维点云的轮廓进行有序提取,使用坐标解析法求解投影面的面积,累加各层面积与切片间隔的乘积得到最终的体积。试验结果表明,提出的第一主成分轴方向切片体积计算效果更好,且轮廓提取算法对比凸包提取法、双向最近邻搜索和改进最近邻搜索算法(improved nearest point search,INPS)算法更准确,效率更高,与Geomagic软件结果相比平均相对误差不超过0.3%,证明了算法的高效性和有效性。 展开更多
关键词 压气机叶片 体积测量 点云 姿态转换 最近邻点搜索算法
在线阅读 下载PDF
图像特征点匹配算法下车辆行驶主动防撞预警
6
作者 张海民 刘训星 《安全与环境学报》 北大核心 2025年第1期41-49,共9页
对于车辆行驶过程中的防撞预警,如果无法识别前车的具体行驶状态,可能使系统反应速度较慢,而不能动态变化调整本车行驶策略,导致无法有效规避潜在碰撞的危险。为了提高车辆在行驶过程中对周围环境的感知能力,防止车辆碰撞事故的发生,提... 对于车辆行驶过程中的防撞预警,如果无法识别前车的具体行驶状态,可能使系统反应速度较慢,而不能动态变化调整本车行驶策略,导致无法有效规避潜在碰撞的危险。为了提高车辆在行驶过程中对周围环境的感知能力,防止车辆碰撞事故的发生,提出了图像特征点匹配算法下车辆行驶主动防撞预警方法。通过尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)对采集到的前车图像中的特征点展开提取;利用近似最近邻搜索算法完成特征点的匹配,并将匹配点对从像素坐标系转换到图像坐标系中,以完成对前车的定位;基于单帧静态图像测距方法获得车距,并将前车的行驶状态分为静止、减速、匀速或加速三种状态,计算不同状态下的提醒报警距离和危险报警距离,动态调整本车行驶策略。当车距达到提醒报警距离或危险报警距离时,发出报警,以此实现车辆行驶过程中的主动防撞预警。试验结果表明:利用图像特征点匹配算法下车辆行驶主动防撞预警方法对前车车距展开测量,测量结果与实际车距基本一致,准确度误差在5 cm以内,相较于差异化预警方法和车联网数据预警方法而言可以更精准地测量车距;此外,所提方法的风险系数最大值为0.12,远小于差异化预警方法和车联网数据预警方法的风险系数,证实了该方法的车辆定位准确度高、防撞预警性能强。 展开更多
关键词 安全工程 车辆防撞预警 图像特征点匹配 尺度不变特征变换算法 近似最近邻搜索算法 特征点提取
原文传递
一种使用斐波那契点实现球面区域划分的算法研究
7
作者 宁方美 赵春燕 《科学技术创新》 2025年第8期81-85,共5页
本文针对计算机图形学中的球面区域划分问题,提出了一种基于斐波那契点的球面区域划分方案。该方案首先通过斐波那契网格在单位球面上均匀分布点,然后利用这些点集生成划分区域。文章首先介绍了两种区域划分方法:斐波那契-多边形网格Mes... 本文针对计算机图形学中的球面区域划分问题,提出了一种基于斐波那契点的球面区域划分方案。该方案首先通过斐波那契网格在单位球面上均匀分布点,然后利用这些点集生成划分区域。文章首先介绍了两种区域划分方法:斐波那契-多边形网格Mesh生成算法和Keinert逆映射斐波那契球面近邻查找算法。并且对后者进行了改进,以实现相邻区域间的平滑过渡。实验结果表明,该方案能够随机且均匀地划分球面区域,满足计算机图形学中的相关需求。 展开更多
关键词 球面区域划分 斐波那契点 计算机图形学 多边形网格生成 最近邻查找算法 平滑过渡
在线阅读 下载PDF
一种基于SURF的图像特征点快速匹配算法 被引量:21
8
作者 陈小丹 杜宇人 高秀斌 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期64-67,共4页
针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜... 针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜索算法(best bin first,BBF)进行特征点匹配;最后根据实际需要选取相似度最高的前n对匹配点进行对比实验.实验结果表明:该算法鲁棒性强,速度快,匹配准确性高,具有较大的应用价值. 展开更多
关键词 图像匹配 特征点 SURF(speeded up robust features) 最近邻搜索算法
在线阅读 下载PDF
一种改进的矢量量化码字搜索算法 被引量:3
9
作者 徐润生 张卫东 +1 位作者 许晓鸣 陆哲明 《电子与信息学报》 EI CSCD 北大核心 2002年第5期604-609,共6页
该文利用图像矢量的平均值和方差,结合了最近邻域搜索算法,构造了一种新的快速矢量量化编码算法。将一个输入矢量分为两个子矢量,分别计算原始矢量、两个子矢量的和以及方差值,利用在这些数值基础上建立的一组三角不等式来排除不可能的... 该文利用图像矢量的平均值和方差,结合了最近邻域搜索算法,构造了一种新的快速矢量量化编码算法。将一个输入矢量分为两个子矢量,分别计算原始矢量、两个子矢量的和以及方差值,利用在这些数值基础上建立的一组三角不等式来排除不可能的码字。仿真结果表明新算法在所需时间和计算复杂度方面优于改进的EENNS算法,为矢量量化算法的研究提供了一种新的思路。 展开更多
关键词 矢量量化码字 搜索算法 最近邻域的搜索 EENNS算法 图像编码
在线阅读 下载PDF
一种基于立方体小栅格的K邻域快速搜索算法 被引量:12
10
作者 赵俭辉 龙成江 +1 位作者 丁乙华 袁志勇 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第5期615-618,共4页
提出了一种新的基于立方体小栅格的K邻域搜索算法。首先,采用二次划分的方法将点云划分到相应的立方体小栅格中;然后,为采样点所在的立方体小栅格确定最终子空间、内子空间和外子空间,结合采样点的球空间,就能很快确定该采样点的K邻域... 提出了一种新的基于立方体小栅格的K邻域搜索算法。首先,采用二次划分的方法将点云划分到相应的立方体小栅格中;然后,为采样点所在的立方体小栅格确定最终子空间、内子空间和外子空间,结合采样点的球空间,就能很快确定该采样点的K邻域的搜索范围。与已有方法相比,该算法具有更高的搜索效率。 展开更多
关键词 K邻域 三维点云 立方体小栅格 搜索算法
原文传递
空间剖分树形查找结构的效率分析 被引量:2
11
作者 董晓芬 张伟 庞明勇 《计算机工程与应用》 CSCD 北大核心 2016年第15期73-78,共6页
空间剖分是构造快速空间查找数据结构的有效方法,四叉树、八叉树、Kd-树是典型的基于空间剖分思想的树形空间查找结构。选择合适的参数来构造实际点集数据的树形查找结构,对提高相关算法的效率具有重要意义。在分析三种树形查找结构基... 空间剖分是构造快速空间查找数据结构的有效方法,四叉树、八叉树、Kd-树是典型的基于空间剖分思想的树形空间查找结构。选择合适的参数来构造实际点集数据的树形查找结构,对提高相关算法的效率具有重要意义。在分析三种树形查找结构基本原理的基础上,通过构造具有不同空间分布特征的实验数据,设置不同的树形空间剖分结构参数,来分析三种结构支持下搜索算法的时间消耗,确定使查找效率达到最优的树形结构构造参数。相关研究结论对于优化空间剖分树形查找结构的效率、提高相关算法的性能等,有一定的参考价值。 展开更多
关键词 空间剖分 树形数据结构 最近邻点搜索 算法优化
在线阅读 下载PDF
一种基于MapReduce的短时交通流预测方法 被引量:11
12
作者 梁轲 谭建军 李英远 《计算机工程》 CAS CSCD 北大核心 2015年第1期174-179,共6页
非参数回归方法是短时交通流预测常用的方法,但现有非参数回归方法存在预测速度与精度之间的矛盾。为此,提出一种适用于海量历史数据、基于Map Reduce与遗传算法的非参数回归短时交通流预测方法。通过引入Map Reduce并行计算框架,加快K... 非参数回归方法是短时交通流预测常用的方法,但现有非参数回归方法存在预测速度与精度之间的矛盾。为此,提出一种适用于海量历史数据、基于Map Reduce与遗传算法的非参数回归短时交通流预测方法。通过引入Map Reduce并行计算框架,加快K最近邻算法的搜索速度。在数据预处理阶段利用遗传算法优化关键参数的设置,并采用Map Reduce加速参数优化过程,以解决遗传算法迭代运算时间长的问题。实验结果表明,该方法在保证交通流预测精度的前提下,明显提高了预测速度,并且具有较好的可伸缩性。 展开更多
关键词 交通流预测 非参数回归 K最近邻搜索 遗传算法 Map Reduce编程模型 并行计算
在线阅读 下载PDF
基于遗传算法优化和KD树的交通流非参数回归预测方法 被引量:8
13
作者 贾宁 马寿峰 钟石泉 《控制与决策》 EI CSCD 北大核心 2012年第7期991-996,共6页
非参数回归预测方法在交通流短时预测中得到了广泛应用.针对提高搜索速度和关键参数的优化设置两个问题,提出使用KD树作为模式库的存储结构,能够有效提高搜索速度,并且能够在实际运行中不断将新发现的交通流模式实时地加入模式库.提出... 非参数回归预测方法在交通流短时预测中得到了广泛应用.针对提高搜索速度和关键参数的优化设置两个问题,提出使用KD树作为模式库的存储结构,能够有效提高搜索速度,并且能够在实际运行中不断将新发现的交通流模式实时地加入模式库.提出使用遗传算法对非参数回归中的重要参数进行优化,实验表明能够得到相对较优的参数设置.所得研究结果为实时的交通流短时预测系统提供了一种较好的预测方法. 展开更多
关键词 交通流预测 非参数回归 近邻搜索 KD树 遗传算法
原文传递
散乱点云的孔洞识别和边界提取算法研究 被引量:10
14
作者 王春香 孟宏 张勇 《机械设计与制造》 北大核心 2019年第3期74-76,81,共4页
针对逆向工程中已有孔洞识别算法执行效率低、孔洞边界点提取不完整等问题,提出一种新的基于KD树和K邻域搜索的点云孔洞识别及边界提取算法。该算法首先利用KD树建立散乱点云的拓扑关系。其次,计算点云密度、定义距离阈值作为判别参数,... 针对逆向工程中已有孔洞识别算法执行效率低、孔洞边界点提取不完整等问题,提出一种新的基于KD树和K邻域搜索的点云孔洞识别及边界提取算法。该算法首先利用KD树建立散乱点云的拓扑关系。其次,计算点云密度、定义距离阈值作为判别参数,利用K邻域搜索计算每个点与其K个邻域点的距离,距离大于阈值的点即为边界点。再次,采用单坐标搜索法去除外边界,保留孔洞边界。最后,利用边界追踪算法获取完整的孔洞边界点。以涡轮叶片和挖掘机斗齿为研究对象,对点云上的自然孔洞利用该算法进行识别。结果表明,该算法能够快速地识别出散乱点云中孔洞,并能完整地提取出孔洞边界点,实用性强。 展开更多
关键词 散乱点云 KD树 K邻域搜索 单坐标搜索法 边界追踪 孔洞边界
在线阅读 下载PDF
基于P2P的自适应分布式k最近邻搜索算法 被引量:1
15
作者 余小高 余小鹏 《计算机工程》 CAS CSCD 北大核心 2009年第19期49-52,55,共5页
k最近邻搜索算法无法满足数据挖掘的分布性、实时性和可扩展性要求,针对该问题提出基于P2P的自适应分布式k最近邻搜索算法[0](P2PAKNNs)。阐述GHT*结构,定义高维数据相似度函数HDSF(X,Y),论述GHT*中的插入算法、范围查找算法和搜索算法... k最近邻搜索算法无法满足数据挖掘的分布性、实时性和可扩展性要求,针对该问题提出基于P2P的自适应分布式k最近邻搜索算法[0](P2PAKNNs)。阐述GHT*结构,定义高维数据相似度函数HDSF(X,Y),论述GHT*中的插入算法、范围查找算法和搜索算法。给出P2PAKNNs的实现过程,通过实验证明其正确性。 展开更多
关键词 k最近邻搜索算法 度量空间 相似性查询
在线阅读 下载PDF
熵选择多重二进制编码 被引量:1
16
作者 赵宏伟 王振 +1 位作者 杨文迪 刘萍萍 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第1期218-226,共9页
为了解决查询高维浮点型数据的近邻点需要计算代价昂贵的欧式距离,内存占用率较高的问题,将高维浮点型数据通过哈希映射函数映射为低维二进制编码,并保证同一样本点在两种空间内的归一化距离满足相似性。从而在实现近邻检索任务时,可使... 为了解决查询高维浮点型数据的近邻点需要计算代价昂贵的欧式距离,内存占用率较高的问题,将高维浮点型数据通过哈希映射函数映射为低维二进制编码,并保证同一样本点在两种空间内的归一化距离满足相似性。从而在实现近邻检索任务时,可使用代价较低的汉明距离替换欧式距离,达到降低检索复杂度的目的。为保证由哈希函数生成的二进制编码具有较优的近邻检索性能,本文首先基于查找机制得到数据集适应空间分布特性的二进制标签,然后利用SVM算法得到二进制标签的分类平面,并选择其中具有最大熵值的平面函数作为最终的哈希映射函数。为了进一步提高近邻检索性能,在训练阶段,初始化多种不同的编码中心点用以生成多重二进制标签,并得到与此相应的多重哈希函数和多重二进制编码。在检索过程中,建立了基于多重二进制编码的近邻检索体系,返回具有较小平均汉明距离的样本点作为最终检索结果。实验结果表明:与其他现存优秀算法相比,本文算法可以快速、有效地将浮点型数据转化为二进制编码,而且基于这些二进制编码的近邻检索性能较优。 展开更多
关键词 计算机应用 近邻检索 二进制特征 哈希编码
在线阅读 下载PDF
面向大规模数据集的索引学习算法研究 被引量:1
17
作者 李繁 严星 《计算机仿真》 北大核心 2021年第10期429-434,共6页
针对现有方法在大规模数据集量化时所产生的信息流失,影响检索准确率等问题,提出了脱机训练与在线索引等两种索引学习算法。采用类神经网络架构去学习最近邻关系,重新定义索引结构。将查询值的特征向量作为类神经网络的输入,类神经网络... 针对现有方法在大规模数据集量化时所产生的信息流失,影响检索准确率等问题,提出了脱机训练与在线索引等两种索引学习算法。采用类神经网络架构去学习最近邻关系,重新定义索引结构。将查询值的特征向量作为类神经网络的输入,类神经网络的输出则是各群的近邻概率。通过预测各群的近邻概率,来取代传统以欧几里得距离来排序的方法。仿真结果表明,通过学习并依照近邻概率去访问各群,可以让候选集信息更为精准。还可以与其它近邻搜索方法整合,提升它们的检索精度。 展开更多
关键词 类神经网络 最近邻搜索算法 量化误差
在线阅读 下载PDF
一种求解旅行商问题的高效混合遗传算法 被引量:22
18
作者 姜昌华 胡幼华 《计算机工程与应用》 CSCD 北大核心 2004年第22期67-70,共4页
旅行商问题(TravellingSalesmanProblemTSP)是一个典型的组合优化难题,论文提出一种求解旅行商问题的高效混合遗传算法。该算法结合遗传算法和2-opt邻域搜索优化技术,并针对旅行商问题的特点,提出K近邻点集以缩减搜索空间从而加快求解... 旅行商问题(TravellingSalesmanProblemTSP)是一个典型的组合优化难题,论文提出一种求解旅行商问题的高效混合遗传算法。该算法结合遗传算法和2-opt邻域搜索优化技术,并针对旅行商问题的特点,提出K近邻点集以缩减搜索空间从而加快求解速度。基于典型实例的仿真结果表明,此算法的求解效率比较高。 展开更多
关键词 TSP 混合遗传算法 2-opt邻域搜索优化 K近邻点集
在线阅读 下载PDF
舱外航天服手臂的逆运动学解法 被引量:1
19
作者 孙奎 谢宗武 +1 位作者 王建宇 刘宏 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第1期60-63,68,共5页
针对航天服手臂的特殊软关节结构和多自由度的特点,提出了基于最近邻的快速逆运动学解法,该方法保证在任何测量位置都能得到航天服关节角度的近似解.采用空间分块二步搜索策略,解决了基于最近邻方法求解舱外航天服手臂逆运动学中内存占... 针对航天服手臂的特殊软关节结构和多自由度的特点,提出了基于最近邻的快速逆运动学解法,该方法保证在任何测量位置都能得到航天服关节角度的近似解.采用空间分块二步搜索策略,解决了基于最近邻方法求解舱外航天服手臂逆运动学中内存占用量大和效率低的缺点.仿真结果表明,最近邻的快速逆运动学解法在计算精度和实时性上均能满足测试系统的要求. 展开更多
关键词 航天服 逆运动学 最邻近算法 空间二步分块搜索
在线阅读 下载PDF
一种面向协同过滤的快速最近邻居搜索方法 被引量:4
20
作者 王永 赵旭辉 +1 位作者 李晓光 肖玲 《计算机工程与应用》 CSCD 北大核心 2021年第17期96-105,共10页
针对协同过滤模型中寻找邻居集耗时,且部分邻居信息未能有效用于预测计算的问题,提出了一种快速搜寻最近邻居的方法。该方法改变了评分矩阵中数据组织方式,通过构建项目的用户评分列表和用户的项目评分列表,以此来筛选出对预测评分值产... 针对协同过滤模型中寻找邻居集耗时,且部分邻居信息未能有效用于预测计算的问题,提出了一种快速搜寻最近邻居的方法。该方法改变了评分矩阵中数据组织方式,通过构建项目的用户评分列表和用户的项目评分列表,以此来筛选出对预测评分值产生影响的用户或项目,进而得到目标用户或项目的邻居集。该方法排除了不必要的相似性计算,提高了运算效率;而且还有效保证了预测计算中的邻居利用率,提高了推荐质量。在Movielens100k与Movielens1M两个数据集上的实验结果表明,所提出算法在运行时间、MAE、RMSE、F1值四个指标上均有较大提升。因此该算法在推荐系统领域具有良好的应用价值。 展开更多
关键词 最近邻居搜索 协同过滤 推荐算法 邻居利用率 线上推荐
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部