In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obta...In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.展开更多
Vehicle Navigation Systems (VNS) is an important component of Intelligent Transportation Systems (ITS). These Systems are designed to assist drivers in making pre trip and enroute travel choice decisions, and typical...Vehicle Navigation Systems (VNS) is an important component of Intelligent Transportation Systems (ITS). These Systems are designed to assist drivers in making pre trip and enroute travel choice decisions, and typically, they must provide route choice, route guidance and other related services. Although there have been a lot of existed systems in the market, and most of them used lots of contemporary technologies, they are believed short of ″true intelligence″, because they paid little attention to the subjective issues in driver′s route choice behavior, such as travel objectives and personal preferences, etc. \;However, the VNS is designed for its users, and the successful implementation of VNS is largely dependent on the driver′s acceptance. If the driver feels that the VNS can′t give him (her) a satisfactory choice, he (she) will not use it, then, the marketing value of VNS will decline. And on the whole, the transport benefit that is mainly gained by the wide use of ITS will lost. \;Supported by the research project of ″Beijing Intelligent Urban Transportation Systems″, this paper presents a conceptual model to deal with this problem. We first defined the driver′s objective as a linguistic statement that has a set of attributes. These attributes are then treated as the fuzzy sets on the universal of all the existed routes. By determining each attribute′s membership function and assign driver dependent perception to these attributes, we can change the multi criteria route choice problem into a fuzzy logic based decision making problem. Then, to meet the demands of dynamic real time route selection, we use a limited routes set for choice and can swiftly get a satisfactory solution that we think is the driver′s actually needs.展开更多
Purpose-A full-order multi-objective anti-disturbance robust filter for SINS/GPS navigation systems with multiple disturbances is designed.Generally,the unmodeled dynamics,the external environmental disturbance and th...Purpose-A full-order multi-objective anti-disturbance robust filter for SINS/GPS navigation systems with multiple disturbances is designed.Generally,the unmodeled dynamics,the external environmental disturbance and the inertial apparatus random drift may exist simultaneously in an integrated navigation system,which can be classified into three type of disturbances,that is,the Gaussian noise,the norm bounded noise and the time correlated noise.In most classical studies,the disturbances in integrated navigation systems are classified as Gaussian noises or norm bounded noises,where the Kalman filtering or robust filtering can be employed,respectively.While it is not true actually,such assumptions may lead to conservative results.The paper aims to discuss these issues.Design/methodology/approach-The Gaussian noises,the norm bounded noises and the time correlated noises in the integrated navigation system are considered simultaneously in this contribution.As a result,the time correlated noises are augmented as a part of system state of the integrated navigation system error model,the relative integrated navigation problem can be transformed into a full-order multi-objective robust filter design problem for systems with Gaussian noises and norm bounded disturbances.Certainly,the errors of the time correlated noises are estimated and compensated for high precision navigation purpose.Sufficient conditions for the existence of the proposed filter are presented in terms of linear matrix inequalities(LMIs)such that the system stability is guaranteed and the disturbance attenuation performance is achieved.Findings-Simulations for SINS/GPS integrated navigation system given show that the proposed full-order multi-objective anti-disturbance filter,has stronger robustness and better precision when multiple disturbances exist,that is,the present algorithm not only can suppression the effect of white noises and norm bounded disturbance but also can estimate and compensate the modeled disturbance.Originality/value-The proposed algorithm has stronger anti-disturbance ability for integrated navigation with multiple disturbances.In fact,there exist multiple disturbances in integrated navigation system,so the proposed scheme has important significance in applications.展开更多
The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error model...The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.展开更多
At the stage of preliminary scheme and algorithm design for spaceborne navigation systems, a precise and high-fidelity software global positioning system (GPS) simulator is a necessary and feasible testing facility ...At the stage of preliminary scheme and algorithm design for spaceborne navigation systems, a precise and high-fidelity software global positioning system (GPS) simulator is a necessary and feasible testing facility in laboratory environments, with consideration of the tradeoffs where possible. This article presents a software GPS measurements simulator on the L1 C/A code and carrier signal for space-oriented navigation system design. The simulator, coded in MATLAB language, generates both C/A code pseudorange and carrier phase measurements. Mathematical models in the Earth centered inertial (ECI) frame are formulated to simulate the GPS constellation and to generate GPS measurements. A series of efficient measures are investigated and utilized to rationalize the enhanced simulator, in terms of ephemeris data selection, space ionospheric model and range rate calculation, etc. Such an enhanced simulator has been facilitating our current work for designing a space integrated GPS/inertial navigation system (INS) navigation system. Consequently, it will promote our future research on space-oriented navigation system.展开更多
Instantaneous Global Navigation Satellite System(GNSS)attitude determination method which achieves real-time attitude determination using GNSS signal has been extensively studied,particularly the one using a priori at...Instantaneous Global Navigation Satellite System(GNSS)attitude determination method which achieves real-time attitude determination using GNSS signal has been extensively studied,particularly the one using a priori attitude information replacing the code measurements to enhance the successful rate for ambiguity resolution.However,there exists a key limitation that this method relies on considerable Monte Carlo sampling particles to construct the pdf of ambiguities,resulting in significant computational burdens.To address this limitation,this paper provides a rapid single-epoch GNSS attitude determination method based on a priori attitude information.It utilizes a second-order Taylor expansion to analytically estimate the covariance of the baseline conditioned on a priori attitude information.This is followed by deriving the float solution and covariance of ambiguities,which are then processed using the standard LAMBDA method for integer ambiguity resolution.Experimental results demonstrate that our method is both efficient and accurate,significantly reducing computational costs compared to previous methods,thereby enhancing its applicability for GNSS-based attitude determination.展开更多
The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obsta...The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.展开更多
An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotatin...An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.展开更多
“The future power system will address high line loss,poor reliability,and heavy pressure on new energy load management,”said Xia Wenbo,Vice President,CTO,Chief Digital Transformation Officer of Electric Power Digita...“The future power system will address high line loss,poor reliability,and heavy pressure on new energy load management,”said Xia Wenbo,Vice President,CTO,Chief Digital Transformation Officer of Electric Power Digitalization Business Unit,Huawei.“The deep integration of intelligent technology in the power sector is essential to navigate these systemic challenges.”展开更多
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o...In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.展开更多
This article, in allusion to the limitation of conventional stellar horizon atmospheric refraction based on orbital dynamics model and nonlinear Kalman filter in practical applications, proposes a new celestial analyt...This article, in allusion to the limitation of conventional stellar horizon atmospheric refraction based on orbital dynamics model and nonlinear Kalman filter in practical applications, proposes a new celestial analytic positioning method by stellar horizon atmospheric refraction for high-altitude flight vehicles, such as spacecraft, airplanes and ballistic missiles. First, by setting up the geometric connexion among the flight vehicle, the Earth and the altitude of starlight refraction, an expression for t...展开更多
To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple ...To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.展开更多
Inertial Navigation System/Celestial Navigation System(INS/CNS)integration,especially for the tightly-coupled mode,provides a promising autonomous tactics for Hypersonic Vehicle(HV)in military demands.However,INS/CNS ...Inertial Navigation System/Celestial Navigation System(INS/CNS)integration,especially for the tightly-coupled mode,provides a promising autonomous tactics for Hypersonic Vehicle(HV)in military demands.However,INS/CNS integration is a challenging research task due to its special characteristics such as strong nonlinearity,non-additive noise and dynamic complexity.This paper presents a novel nonlinear filtering method for INS/CNS integration by adopting the emerging Cubature Kalman Filter(CKF)to handle the strong INS error model nonlinearity caused by HV's high dynamics.It combines the state-augmentation technique into the nonlinear CKF to decrease the negative effect of non-additive noise in inertial measurements.Subsequently,a technique for the detection of dynamic model uncertainty is developed,and the augmented CKF is modified with fading memory to tackle dynamic model uncertainty by rigorously deriving the fading factor via the theory of Mahalanobis distance without artificial empiricism.Simulation results and comparison analysis prove that the proposed method can effectively curb the adverse impacts of non-additive noise and dynamic model uncertainty for inertial measurements,leading to improved performance for HV navigation with tightly-coupled INS/CNS integration.展开更多
Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation ...Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation to continue in the presence of fault measurement.Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly.However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage.In this paper, the impact of leverage on the fault identification is analyzed.The leveraged RAIM fault identification(L-RAIM FI) method is proposed with consideration of the difference in leverage for each satellite in view.Furthermore,the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method.The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage.展开更多
Considering defects of current single celestial-body positioning methods such as discon- tinuity and long period, a new sun positioning algorithm is herein put forward. Instead of tradi- tional astronomical spherical ...Considering defects of current single celestial-body positioning methods such as discon- tinuity and long period, a new sun positioning algorithm is herein put forward. Instead of tradi- tional astronomical spherical trigonometry and celestial coordinate system, the proposed new positioning algorithm is built by theory of mechanisms. Based on previously derived solar vector equations (from a C1R2p2 series mechanism), a further global positioning method is developed by inverse kinematics. The longitude and latitude coordinates expressed by Greenwich mean time (GMT) and solar vector in local coordinate system are formulated. Meanwhile, elimination method of multiple solutions, errors of longitude and latitude calculation are given. In addition, this algo- rithm has been integrated successfully into a mobile phone application to visualize sun positioning process. Results of theoretical verification and smart phone's test demonstrate the validity of pre- sented coordinate's expressions. Precision is shown as equivalent to current works and is acceptable to civil aviation requirement. This new method solves long-period problem in sun sight running fix- ing and improves applicability of sun positioning. Its methodology can inspire development of new sun positioning device. It would be more applicable to be combined with inertial navigation systems for overcoming discontinuity of celestial navigation systems and accumulative errors of inertial nav- igation systems.展开更多
Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analy...Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analysis of the same batch of FOGs is proposed.The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs.Then,the correlation information of the multiple FOGs was used to analyze the feasibility of the method.Eventually,the same residual error of the FOGs was compensated via the simple piecewise linear models.The experimental results indicate that excellent compensation effects for both high-and low-accuracy FOGs are achieved using the proposed method.Specifically,the accuracies of high-accuracy FOGs are improved by approximately 33.9%,20%,and 31.2%,while those of low-accuracy FOGs are improved by approximately 39.1%,20.8%,and 26.1%.The method exhibits the merits of simplicity,validity,and stability,and thus is expected to be widely used in engineering applications.展开更多
A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the ...A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the scenario of reciprocal displacement of the receiver relative to navigation satellites and their signals. In the first block, according to the known coordinates of the receiver which are specified in tabular form or analytically, the distances between the receiver and the navigation satellites are calculated as well as their relative velocities. According to these data, the second block synthesizes the signals of navigational travelers with the specified characteristics which are transmitted via the air or cable with a given attenuation to the receiver. This allows testing on the earth receivers for airplanes and space objects under different scenarios of their movement, which not only reduces the risk of problems during the flight, but also avoids significant economic costs. Based on real data obtained by approaching two spacecraft using a simulator, the receiver was tested, which shows the promise of the proposed technology.展开更多
This paper presents the interpolation method of generating the differential correction to coordinates and pseudorange.As a consequence,to improve the quality and stability of the generated correction of amendments,it ...This paper presents the interpolation method of generating the differential correction to coordinates and pseudorange.As a consequence,to improve the quality and stability of the generated correction of amendments,it is advisable to use a system of three reference points.Experiment demonstrates the advantages of the interpolation method in comparison with the standard method of differential correction.展开更多
基金co-supported by the National Natural Science Foundation of China(No.61153002)the Aeronautical Science Foundation of China(No.20130153002)
文摘In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.
文摘Vehicle Navigation Systems (VNS) is an important component of Intelligent Transportation Systems (ITS). These Systems are designed to assist drivers in making pre trip and enroute travel choice decisions, and typically, they must provide route choice, route guidance and other related services. Although there have been a lot of existed systems in the market, and most of them used lots of contemporary technologies, they are believed short of ″true intelligence″, because they paid little attention to the subjective issues in driver′s route choice behavior, such as travel objectives and personal preferences, etc. \;However, the VNS is designed for its users, and the successful implementation of VNS is largely dependent on the driver′s acceptance. If the driver feels that the VNS can′t give him (her) a satisfactory choice, he (she) will not use it, then, the marketing value of VNS will decline. And on the whole, the transport benefit that is mainly gained by the wide use of ITS will lost. \;Supported by the research project of ″Beijing Intelligent Urban Transportation Systems″, this paper presents a conceptual model to deal with this problem. We first defined the driver′s objective as a linguistic statement that has a set of attributes. These attributes are then treated as the fuzzy sets on the universal of all the existed routes. By determining each attribute′s membership function and assign driver dependent perception to these attributes, we can change the multi criteria route choice problem into a fuzzy logic based decision making problem. Then, to meet the demands of dynamic real time route selection, we use a limited routes set for choice and can swiftly get a satisfactory solution that we think is the driver′s actually needs.
基金supported by the National Basic Research Program of China(“973”Program)under grant No.2012CB720003the Natural Science Foundation of China(NSFC)under Grant No.61127007,60925012,91016004,61121003.
文摘Purpose-A full-order multi-objective anti-disturbance robust filter for SINS/GPS navigation systems with multiple disturbances is designed.Generally,the unmodeled dynamics,the external environmental disturbance and the inertial apparatus random drift may exist simultaneously in an integrated navigation system,which can be classified into three type of disturbances,that is,the Gaussian noise,the norm bounded noise and the time correlated noise.In most classical studies,the disturbances in integrated navigation systems are classified as Gaussian noises or norm bounded noises,where the Kalman filtering or robust filtering can be employed,respectively.While it is not true actually,such assumptions may lead to conservative results.The paper aims to discuss these issues.Design/methodology/approach-The Gaussian noises,the norm bounded noises and the time correlated noises in the integrated navigation system are considered simultaneously in this contribution.As a result,the time correlated noises are augmented as a part of system state of the integrated navigation system error model,the relative integrated navigation problem can be transformed into a full-order multi-objective robust filter design problem for systems with Gaussian noises and norm bounded disturbances.Certainly,the errors of the time correlated noises are estimated and compensated for high precision navigation purpose.Sufficient conditions for the existence of the proposed filter are presented in terms of linear matrix inequalities(LMIs)such that the system stability is guaranteed and the disturbance attenuation performance is achieved.Findings-Simulations for SINS/GPS integrated navigation system given show that the proposed full-order multi-objective anti-disturbance filter,has stronger robustness and better precision when multiple disturbances exist,that is,the present algorithm not only can suppression the effect of white noises and norm bounded disturbance but also can estimate and compensate the modeled disturbance.Originality/value-The proposed algorithm has stronger anti-disturbance ability for integrated navigation with multiple disturbances.In fact,there exist multiple disturbances in integrated navigation system,so the proposed scheme has important significance in applications.
基金Supported by the National Natural Science Foundation of China(60702003)~~
文摘The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.
基金Research Fund of Shanghai Academy of Spaceflight Technology
文摘At the stage of preliminary scheme and algorithm design for spaceborne navigation systems, a precise and high-fidelity software global positioning system (GPS) simulator is a necessary and feasible testing facility in laboratory environments, with consideration of the tradeoffs where possible. This article presents a software GPS measurements simulator on the L1 C/A code and carrier signal for space-oriented navigation system design. The simulator, coded in MATLAB language, generates both C/A code pseudorange and carrier phase measurements. Mathematical models in the Earth centered inertial (ECI) frame are formulated to simulate the GPS constellation and to generate GPS measurements. A series of efficient measures are investigated and utilized to rationalize the enhanced simulator, in terms of ephemeris data selection, space ionospheric model and range rate calculation, etc. Such an enhanced simulator has been facilitating our current work for designing a space integrated GPS/inertial navigation system (INS) navigation system. Consequently, it will promote our future research on space-oriented navigation system.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Nos.25202520,15214523)the Fundamental Research Funds for the Central Universities,China(No.YWF-22-L-805)。
文摘Instantaneous Global Navigation Satellite System(GNSS)attitude determination method which achieves real-time attitude determination using GNSS signal has been extensively studied,particularly the one using a priori attitude information replacing the code measurements to enhance the successful rate for ambiguity resolution.However,there exists a key limitation that this method relies on considerable Monte Carlo sampling particles to construct the pdf of ambiguities,resulting in significant computational burdens.To address this limitation,this paper provides a rapid single-epoch GNSS attitude determination method based on a priori attitude information.It utilizes a second-order Taylor expansion to analytically estimate the covariance of the baseline conditioned on a priori attitude information.This is followed by deriving the float solution and covariance of ambiguities,which are then processed using the standard LAMBDA method for integer ambiguity resolution.Experimental results demonstrate that our method is both efficient and accurate,significantly reducing computational costs compared to previous methods,thereby enhancing its applicability for GNSS-based attitude determination.
文摘The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.
基金supported by the National Natural Science Foundation of China (No.40904018)the Key Laboratory Foundation of the Ministry of Education of China (No.201001)the Doctoral Innovation Foundation of Naval University of Engineering (No.BSJJ2011008)
文摘An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.
文摘“The future power system will address high line loss,poor reliability,and heavy pressure on new energy load management,”said Xia Wenbo,Vice President,CTO,Chief Digital Transformation Officer of Electric Power Digitalization Business Unit,Huawei.“The deep integration of intelligent technology in the power sector is essential to navigate these systemic challenges.”
基金supported by the National Natural Science Foundation of China(62103104)the Natural Science Foundation of Jiangsu Province(BK20210215)the China Postdoctoral Science Foundation(2021M690615).
文摘In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.
文摘This article, in allusion to the limitation of conventional stellar horizon atmospheric refraction based on orbital dynamics model and nonlinear Kalman filter in practical applications, proposes a new celestial analytic positioning method by stellar horizon atmospheric refraction for high-altitude flight vehicles, such as spacecraft, airplanes and ballistic missiles. First, by setting up the geometric connexion among the flight vehicle, the Earth and the altitude of starlight refraction, an expression for t...
基金Pre-research Foundation of PLA General Armaments Department (51309010602) National Natural Science Foundation of China (60774002)
文摘To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.
基金co-supported by the National Natural Science Foundation of China(Nos.41904028,42004021)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2020JQ-150,2020JQ-234)the Soft Science Project of Xi’an Science and Technology Plan(No.XA2020RKXYJ-0150)。
文摘Inertial Navigation System/Celestial Navigation System(INS/CNS)integration,especially for the tightly-coupled mode,provides a promising autonomous tactics for Hypersonic Vehicle(HV)in military demands.However,INS/CNS integration is a challenging research task due to its special characteristics such as strong nonlinearity,non-additive noise and dynamic complexity.This paper presents a novel nonlinear filtering method for INS/CNS integration by adopting the emerging Cubature Kalman Filter(CKF)to handle the strong INS error model nonlinearity caused by HV's high dynamics.It combines the state-augmentation technique into the nonlinear CKF to decrease the negative effect of non-additive noise in inertial measurements.Subsequently,a technique for the detection of dynamic model uncertainty is developed,and the augmented CKF is modified with fading memory to tackle dynamic model uncertainty by rigorously deriving the fading factor via the theory of Mahalanobis distance without artificial empiricism.Simulation results and comparison analysis prove that the proposed method can effectively curb the adverse impacts of non-additive noise and dynamic model uncertainty for inertial measurements,leading to improved performance for HV navigation with tightly-coupled INS/CNS integration.
基金supported by the National Basic Research Program of China (No.2011CB707004)the National Natural Science Foundation of China (No.61179054)
文摘Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation to continue in the presence of fault measurement.Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly.However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage.In this paper, the impact of leverage on the fault identification is analyzed.The leveraged RAIM fault identification(L-RAIM FI) method is proposed with consideration of the difference in leverage for each satellite in view.Furthermore,the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method.The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage.
基金co-supported by the National Natural Science Foundation of China,Civil Aviation Administration of China(Nos.U1233106,U1533103,11502284)the Fundamental Research Funds for the Central Universities(No.ZXH2012H007)Tianjin Natural Science Foundation(No.15JCQNJC42600)
文摘Considering defects of current single celestial-body positioning methods such as discon- tinuity and long period, a new sun positioning algorithm is herein put forward. Instead of tradi- tional astronomical spherical trigonometry and celestial coordinate system, the proposed new positioning algorithm is built by theory of mechanisms. Based on previously derived solar vector equations (from a C1R2p2 series mechanism), a further global positioning method is developed by inverse kinematics. The longitude and latitude coordinates expressed by Greenwich mean time (GMT) and solar vector in local coordinate system are formulated. Meanwhile, elimination method of multiple solutions, errors of longitude and latitude calculation are given. In addition, this algo- rithm has been integrated successfully into a mobile phone application to visualize sun positioning process. Results of theoretical verification and smart phone's test demonstrate the validity of pre- sented coordinate's expressions. Precision is shown as equivalent to current works and is acceptable to civil aviation requirement. This new method solves long-period problem in sun sight running fix- ing and improves applicability of sun positioning. Its methodology can inspire development of new sun positioning device. It would be more applicable to be combined with inertial navigation systems for overcoming discontinuity of celestial navigation systems and accumulative errors of inertial nav- igation systems.
基金supported by the Young Scientists Fund,China(No.62103021).
文摘Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analysis of the same batch of FOGs is proposed.The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs.Then,the correlation information of the multiple FOGs was used to analyze the feasibility of the method.Eventually,the same residual error of the FOGs was compensated via the simple piecewise linear models.The experimental results indicate that excellent compensation effects for both high-and low-accuracy FOGs are achieved using the proposed method.Specifically,the accuracies of high-accuracy FOGs are improved by approximately 33.9%,20%,and 31.2%,while those of low-accuracy FOGs are improved by approximately 39.1%,20.8%,and 26.1%.The method exhibits the merits of simplicity,validity,and stability,and thus is expected to be widely used in engineering applications.
文摘A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the scenario of reciprocal displacement of the receiver relative to navigation satellites and their signals. In the first block, according to the known coordinates of the receiver which are specified in tabular form or analytically, the distances between the receiver and the navigation satellites are calculated as well as their relative velocities. According to these data, the second block synthesizes the signals of navigational travelers with the specified characteristics which are transmitted via the air or cable with a given attenuation to the receiver. This allows testing on the earth receivers for airplanes and space objects under different scenarios of their movement, which not only reduces the risk of problems during the flight, but also avoids significant economic costs. Based on real data obtained by approaching two spacecraft using a simulator, the receiver was tested, which shows the promise of the proposed technology.
基金Task Complex Program NAS of Ukraine on Space Research for 2012-2016
文摘This paper presents the interpolation method of generating the differential correction to coordinates and pseudorange.As a consequence,to improve the quality and stability of the generated correction of amendments,it is advisable to use a system of three reference points.Experiment demonstrates the advantages of the interpolation method in comparison with the standard method of differential correction.