Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to t...Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to ten times more parameters than traditional sensors,making selection a challenging task even for experts.This study addresses this challenge,focusing on defensive guidance,navigation,and control(GNC)systems where precise and reliable angular velocity measurement is critical to overall performance.A comprehensive mathematical model is introduced to encapsulate all key MEMS parameters,accompanied by discussions on calibration and Allan variance interpretation.For six leading MEMS gyroscope applications,namely inertial navigation,integrated navigation,autopilot systems,rotating projectiles,homing guidance,and north finding,the most critical parameters are identified,distinguishing suitable and unsuitable sensor choices.Special emphasis is placed on inertial navigation systems,where practical rules of thumb for error evaluation are derived using six degrees of freedom motion equations.Rigorous simulations demonstrate the influence of various sensor parameters through real-world case studies,including static navigation,multi-rotor attitude estimation,gimbal stabilization,and north finding via a turntable.This work aims to be a beacon for practitioners across diverse fields,empowering them to make more informed design decisions.展开更多
Throughout humanity's advancement,space has evolved from an unattainable frontier into a vital pillar sustaining modem society.As a new domain of human endeavor,it now underpins critical global infrastructure-powe...Throughout humanity's advancement,space has evolved from an unattainable frontier into a vital pillar sustaining modem society.As a new domain of human endeavor,it now underpins critical global infrastructure-powering communications,enabling precision navigation and facilitating climate monitoring,making its security indispensable to both national interests and societal progress.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
文摘Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to ten times more parameters than traditional sensors,making selection a challenging task even for experts.This study addresses this challenge,focusing on defensive guidance,navigation,and control(GNC)systems where precise and reliable angular velocity measurement is critical to overall performance.A comprehensive mathematical model is introduced to encapsulate all key MEMS parameters,accompanied by discussions on calibration and Allan variance interpretation.For six leading MEMS gyroscope applications,namely inertial navigation,integrated navigation,autopilot systems,rotating projectiles,homing guidance,and north finding,the most critical parameters are identified,distinguishing suitable and unsuitable sensor choices.Special emphasis is placed on inertial navigation systems,where practical rules of thumb for error evaluation are derived using six degrees of freedom motion equations.Rigorous simulations demonstrate the influence of various sensor parameters through real-world case studies,including static navigation,multi-rotor attitude estimation,gimbal stabilization,and north finding via a turntable.This work aims to be a beacon for practitioners across diverse fields,empowering them to make more informed design decisions.
文摘Throughout humanity's advancement,space has evolved from an unattainable frontier into a vital pillar sustaining modem society.As a new domain of human endeavor,it now underpins critical global infrastructure-powering communications,enabling precision navigation and facilitating climate monitoring,making its security indispensable to both national interests and societal progress.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.