In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactio...In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.展开更多
The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,...The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.展开更多
Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show gr...Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show great potentials in building up the luminescent hybrid materials due to their obvious advantages such as high purity, high dispersibility(or solubility) in water to yield translucent gels and clear aqueous solution. Additionally, their strong adsorption capacity for non-polar molecules or complexes is favorable to the formation of water-soluble and aqueous processable luminescent materials. This feature article summarizes the latest developments in the design and preparation of highly luminescent organicinorganic hybrid materials with excellent aqueous process ability based on lanthanide complexes intercalated synthetic clays.展开更多
Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of...Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.展开更多
Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymeriz...Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymerization of EMA, the hybrid material containing Tb(acac) 3·dam was obtained. The hybrid material exhibited good toughness and transparency and higher thermal stability than that of the pure complex and pure polymer matrix. In the range of doping concentration of Tb(acac) 3·dam (0.05%, 0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 5.0%), emission intensity increases with the increasing of corresponding doping concentration and concentration quenching effect has not taken place.展开更多
The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanth...The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanthanide complexes but also improves the poor stability of the complexes.In this article,we introduce the luminescence mechanism of lanthanide complexes and point out the necessity of their combination with clay minerals.After the analysis of the structure and interlayer environment differences of 1:1-type and 2:1-type clay minerals,the intercalation methods(covalent grafting and ion exchange)appropriate for different clay minerals are summarized with examples.Based on the luminescence characteristics of the hybrid materials,the applications of these materials as luminescent probes in recognition of specific metal cations and molecules,detection of pH value,and temperature are reviewed.Finally,the current problems in the preparation of lanthanide complexes/clay minerals hybrid luminescent materials and shortcomings that need improvement in their performance are analyzed,and the application prospect is forecast.展开更多
An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manip...An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.展开更多
The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO...The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.展开更多
Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impreg...Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.展开更多
Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of t...Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of the nano-structured Ag solid materials (NSS-Ag) were studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectrometer. The NSS-Ag could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. The common probe molecules Rhodamine 6G (R6G, 1×10-10 mol/L) were used to test the SERS activity on these substrates at very low concentrations. It is found that the SERS enhancement ability is dependent on the density of NSS-Ag. When the relative density of NSS-Ag is 83.87%, the materials reveal great SERS signal.展开更多
Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of lum...Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of luminescent materials.In recent years,the novel macrocyclic arenes characterized by unique electron-rich structures,ease of derivatization,tunable conformations and even inherent luminescence properties afford much opportunities to create such dynamic smart luminescent materials.The incorporation of macrocyclic arenes into SLMs leads to simple preparation process,diverse photophysical phenomena and sophisticated regulatory mechanisms,which is also currently one of the most frontier and hot topics in macrocyclic and supramolecular chemistry and even luminescent materials.In this review,the research advances in construction and applications of SLMs based on macrocyclic arenes in the last several years will be presented from the different assembly strategies,including host-vip complexes,supramolecular polymers,nanoparticles,and other assemblies.Moreover,some insights into future directions for this research area will also be offered.展开更多
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. There...In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.展开更多
Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An...Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An interdigital gold electrode was covered by screen printing films of doped PPBT (DPPBT) to prepare a resistance-type humidity sensor, which exhibits electrical response towards relative humidity (RH%) variations in the range 11%-96%. PPBT shows promise as a new humidity-sensitive material.展开更多
Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in ...Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in materials science,traditional approaches often encounter significant challenges related to computational efficiency and scalability,particularly when applied to complex systems.Recent advances in machine learning(ML)have shown tremendous promise in addressing these limitations,enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions.This review provides a concise overview of recent progress in ML-assisted CSP methodologies,with a particular focus on machine learning potentials and generative models.By critically analyzing these advances,we highlight the transformative impact of ML in accelerating materials discovery,enhancing computational efficiency,and broadening the applicability of CSP.Additionally,we discuss emerging opportunities and challenges in this rapidly evolving field.展开更多
In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hie...In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hierarchal relationships as a structured tree.In order to gain all required maintenance information for complex equipment which is complex,the modeling and the application of maintenance BOM are introduced in this paper. Because of the simple structure and the wide function,IDEF0 is presented to build the model of maintenance BOM. The modeling approach can gather the maintenance information conveniently based on other BOMs,and applications of maintenance BOM are widely,particularly,in maintenance and inventory management.展开更多
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and...Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.展开更多
In this paper,sine trigonometry operational laws(ST-OLs)have been extended to neutrosophic sets(NSs)and the operations and functionality of these laws are studied.Then,extending these ST-OLs to complex neutrosophic se...In this paper,sine trigonometry operational laws(ST-OLs)have been extended to neutrosophic sets(NSs)and the operations and functionality of these laws are studied.Then,extending these ST-OLs to complex neutrosophic sets(CNSs)forms the core of thiswork.Some of themathematical properties are proved based on ST-OLs.Fundamental operations and the distance measures between complex neutrosophic numbers(CNNs)based on the ST-OLs are discussed with numerical illustrations.Further the arithmetic and geometric aggregation operators are established and their properties are verified with numerical data.The general properties of the developed sine trigonometry weighted averaging/geometric aggregation operators for CNNs(ST-WAAO-CNN&ST-WGAO-CNN)are proved.A decision making technique based on these operators has been developed with the help of unsupervised criteria weighting approach called Entropy-ST-OLs-CNDM(complex neutrosophic decision making)method.A case study for material selection has been chosen to demonstrate the ST-OLs of CNDM method.To check the validity of the proposed method,entropy based complex neutrosophic CODAS approach with ST-OLs has been executed numerically and a comparative analysis with the discussion of their outcomes has been conducted.The proposed approach proves to be salient and effective for decision making with complex information.展开更多
The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the St...The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the Stroh theory. The problem was reduced to a Hilbert problem, and then closed_form expressions were obtained, respectively, for the complex potentials in piezoelectric media, the electric field inside the inclusion and the tip fields near the inclusion. It is shown that in the media, all field variables near the inclusion_tip show square root singularity and oscillatory singularity, the intensity of which is dependent on the material constants and the strains at infinity. In addition, it is found that the electric field inside the inclusion is singular and oscillatory too, when approaching the inclusion_tips from inside the inclusion.展开更多
A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the pro...A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the problem to Hilbert problem. As a result, closed form field solutions in the piezoelectric material and inside the crack are presented. It is shown that the stresses and electric displacement have square root singularities at the crack tips, but the electric field is uniform everywhere in the material and equal to the remote applied one. It is also found that the electric displacement intensity factor depends on both material properties and the mechanical loads, but not the electric loads. Hence it may be concluded that the electric loads have no influence on the field singularities.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22201057 and 22472044)Zhejiang Provincial Natural Science Foundation of China(Nos.LR22B010001 and LQ23B010001)。
文摘In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.
基金Supported by National Natural Science Foundation of China(Grant No.52075501).
文摘The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.
基金Project support by the National Natural Science Foundation of China(21171046,21502039,21271060)the Natural Science Foundation of Hebei Province(No.B2016202147,B2016202149,B2017202048)+2 种基金Educational Committee of Hebei Province(LJRC021,QN2015172)Hebei Provincial College of Science and Technology Research Project(BJ2018054)Tianjin Natural Science Foundation(18JCYBJC17200)
文摘Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show great potentials in building up the luminescent hybrid materials due to their obvious advantages such as high purity, high dispersibility(or solubility) in water to yield translucent gels and clear aqueous solution. Additionally, their strong adsorption capacity for non-polar molecules or complexes is favorable to the formation of water-soluble and aqueous processable luminescent materials. This feature article summarizes the latest developments in the design and preparation of highly luminescent organicinorganic hybrid materials with excellent aqueous process ability based on lanthanide complexes intercalated synthetic clays.
文摘Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.
文摘Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymerization of EMA, the hybrid material containing Tb(acac) 3·dam was obtained. The hybrid material exhibited good toughness and transparency and higher thermal stability than that of the pure complex and pure polymer matrix. In the range of doping concentration of Tb(acac) 3·dam (0.05%, 0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 5.0%), emission intensity increases with the increasing of corresponding doping concentration and concentration quenching effect has not taken place.
基金Project supported by the National Natural Science Foundation of China(51872269,42072053)。
文摘The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanthanide complexes but also improves the poor stability of the complexes.In this article,we introduce the luminescence mechanism of lanthanide complexes and point out the necessity of their combination with clay minerals.After the analysis of the structure and interlayer environment differences of 1:1-type and 2:1-type clay minerals,the intercalation methods(covalent grafting and ion exchange)appropriate for different clay minerals are summarized with examples.Based on the luminescence characteristics of the hybrid materials,the applications of these materials as luminescent probes in recognition of specific metal cations and molecules,detection of pH value,and temperature are reviewed.Finally,the current problems in the preparation of lanthanide complexes/clay minerals hybrid luminescent materials and shortcomings that need improvement in their performance are analyzed,and the application prospect is forecast.
文摘An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.
基金Supported by the Opening Project of Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South(XNZW14C08)the NSF of Hunan Province(2015JJ2072)+2 种基金the Construct Program of the Key Discipline in Hunan Provincethe Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Project for Undergraduate Research Study and Innovative Experiment of Hunan Provincial(2016-283)
文摘The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.
基金financial supportfrom PRAMX 98-05 and helpful discussion with Dr.A.C.Franville.
文摘Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(2007CB815102) supported by the National Basic Research Program of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of the nano-structured Ag solid materials (NSS-Ag) were studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectrometer. The NSS-Ag could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. The common probe molecules Rhodamine 6G (R6G, 1×10-10 mol/L) were used to test the SERS activity on these substrates at very low concentrations. It is found that the SERS enhancement ability is dependent on the density of NSS-Ag. When the relative density of NSS-Ag is 83.87%, the materials reveal great SERS signal.
基金the National Natural Science Foundation of China(Nos.22171272,22031010)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0520302)the Youth Innovation Promotion Association CAS(No.2021035)for financial support。
文摘Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of luminescent materials.In recent years,the novel macrocyclic arenes characterized by unique electron-rich structures,ease of derivatization,tunable conformations and even inherent luminescence properties afford much opportunities to create such dynamic smart luminescent materials.The incorporation of macrocyclic arenes into SLMs leads to simple preparation process,diverse photophysical phenomena and sophisticated regulatory mechanisms,which is also currently one of the most frontier and hot topics in macrocyclic and supramolecular chemistry and even luminescent materials.In this review,the research advances in construction and applications of SLMs based on macrocyclic arenes in the last several years will be presented from the different assembly strategies,including host-vip complexes,supramolecular polymers,nanoparticles,and other assemblies.Moreover,some insights into future directions for this research area will also be offered.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)
文摘In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
文摘Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An interdigital gold electrode was covered by screen printing films of doped PPBT (DPPBT) to prepare a resistance-type humidity sensor, which exhibits electrical response towards relative humidity (RH%) variations in the range 11%-96%. PPBT shows promise as a new humidity-sensitive material.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402304)the National Natural Science Foundation of China(Grant Nos.12034009,12374005,52288102,52090024,and T2225013)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Program for JLU Science and Technology Innovative Research Team.
文摘Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in materials science,traditional approaches often encounter significant challenges related to computational efficiency and scalability,particularly when applied to complex systems.Recent advances in machine learning(ML)have shown tremendous promise in addressing these limitations,enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions.This review provides a concise overview of recent progress in ML-assisted CSP methodologies,with a particular focus on machine learning potentials and generative models.By critically analyzing these advances,we highlight the transformative impact of ML in accelerating materials discovery,enhancing computational efficiency,and broadening the applicability of CSP.Additionally,we discuss emerging opportunities and challenges in this rapidly evolving field.
基金National Natural Science Foundation of China(No.71471147)the Basic Research Project of Natural Science in Shaanxi Province of China(No.2015JQ7273)the 111 Project of China(No.B13044)
文摘In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hierarchal relationships as a structured tree.In order to gain all required maintenance information for complex equipment which is complex,the modeling and the application of maintenance BOM are introduced in this paper. Because of the simple structure and the wide function,IDEF0 is presented to build the model of maintenance BOM. The modeling approach can gather the maintenance information conveniently based on other BOMs,and applications of maintenance BOM are widely,particularly,in maintenance and inventory management.
基金the National Natural Science Foundation of China(22065038)the Key Project of Natural Science Foundation of Yunnan(KC10110419)+4 种基金the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(K264202006820)the Program for Excellent Young Talents of Yunnan University and Major Science(C176220200)the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2019Z E001-1202002AB080001)for financial support。
文摘Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.
基金the Rajamangala University of Technology Suvarnabhumi.
文摘In this paper,sine trigonometry operational laws(ST-OLs)have been extended to neutrosophic sets(NSs)and the operations and functionality of these laws are studied.Then,extending these ST-OLs to complex neutrosophic sets(CNSs)forms the core of thiswork.Some of themathematical properties are proved based on ST-OLs.Fundamental operations and the distance measures between complex neutrosophic numbers(CNNs)based on the ST-OLs are discussed with numerical illustrations.Further the arithmetic and geometric aggregation operators are established and their properties are verified with numerical data.The general properties of the developed sine trigonometry weighted averaging/geometric aggregation operators for CNNs(ST-WAAO-CNN&ST-WGAO-CNN)are proved.A decision making technique based on these operators has been developed with the help of unsupervised criteria weighting approach called Entropy-ST-OLs-CNDM(complex neutrosophic decision making)method.A case study for material selection has been chosen to demonstrate the ST-OLs of CNDM method.To check the validity of the proposed method,entropy based complex neutrosophic CODAS approach with ST-OLs has been executed numerically and a comparative analysis with the discussion of their outcomes has been conducted.The proposed approach proves to be salient and effective for decision making with complex information.
文摘The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the Stroh theory. The problem was reduced to a Hilbert problem, and then closed_form expressions were obtained, respectively, for the complex potentials in piezoelectric media, the electric field inside the inclusion and the tip fields near the inclusion. It is shown that in the media, all field variables near the inclusion_tip show square root singularity and oscillatory singularity, the intensity of which is dependent on the material constants and the strains at infinity. In addition, it is found that the electric field inside the inclusion is singular and oscillatory too, when approaching the inclusion_tips from inside the inclusion.
文摘A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the problem to Hilbert problem. As a result, closed form field solutions in the piezoelectric material and inside the crack are presented. It is shown that the stresses and electric displacement have square root singularities at the crack tips, but the electric field is uniform everywhere in the material and equal to the remote applied one. It is also found that the electric displacement intensity factor depends on both material properties and the mechanical loads, but not the electric loads. Hence it may be concluded that the electric loads have no influence on the field singularities.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.