CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high therma...CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high thermal conductivity of CuInSe_(2) limits the enhancement of its thermoelectric performance.Herein,we investigate the thermoelectric performance of N-type CuInSe_(2) materials by incorporating ZnSe through a solid solution strategy.A series of(CuInSe_(2))_(1-x)(ZnSe)_(x)(x=0.0,0.2,0.4,0.6,0.8,1.0)samples were synthesized,forming continuous solid solutions,while introducing minor porosity.ZnSe solid solution effectively reduces the lattice thermal conductivity of the CuInSe_(2) matrix at near-room temperatures,but has a weaker effect at higher temperatures.Due to the intrinsic low carrier concentration of the system,resulting in high resistivity,the maximum figure of merit(ZT)of(CuInSe_(2))0.8(ZnSe)0.2 reaches 0.08 at 773 K.Despite the relatively low ZT,the solid solution strategy proves effective in reducing the lattice thermal conductivity near-room temperature and offers potential for cost-effective thermoelectric materials.展开更多
Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)ca...Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.展开更多
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf...Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.展开更多
To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solu...To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).展开更多
The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd...The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.展开更多
The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leach...The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.展开更多
The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesi...The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.展开更多
The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution sat...The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.展开更多
The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese scr...The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.展开更多
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational lo...In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.展开更多
Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior wa...Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic so...Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escap...Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escape contamination and recycle samples will ultimately govern the viability of ILs in the future industrial applications. Therefore, in this paper a new method for separation of ILs from their dilute aqueous solutions and simultaneously purification of water was proposed on the basis of the CO2 hydrate formation. For illustration, the dilute aqueous solutions with concentrations of ILs ranging from 2× 10^-3 mol% to 2×10^-1 mol% were concentrated. The results show that the separation efficiency is very impressive and that the new method is applicable to aqueous solutions of both hydrophobic and hydrophilic ILs. Compared to the literature separation method based on the supercritical CO2, the new method is applicable to lower concentrations, and more importantly, its operation condition is mild.展开更多
La2Ce2O7 (LCO) is a promising candidate for thermal barrier coatings (TBCs) due to that it provides better thermal insulation than yttria-stabilized zirconia (YSZ) does. In this work, a TBC LCO was produced by solutio...La2Ce2O7 (LCO) is a promising candidate for thermal barrier coatings (TBCs) due to that it provides better thermal insulation than yttria-stabilized zirconia (YSZ) does. In this work, a TBC LCO was produced by solution precursor plasma spraying (SPPS). After the solution precursors were prepared and the spraying parameters were optimized, the thermophysical properties and thermal shock performance of the coatings were tested. It was found that the SPPS coating with segmentation crack density of 6 mm^-1 had the porosities of about 33.5% at spray distances of 35 mm. The thermal conductivity of the SPPS coatings is 0.50-0.75 W·m^-1·K^-1, much lower than that of the atmospheric plasma spraying (APS) coatings (0.85-1.25 W·m^-1·K^-1). The thermal shock performance of the SPPS coatings reached 60 cycles, much better than the APS coatings. This improvement is due to the segmentation cracks in the coatings, which can improve strain tolerance and effectively relieve internal stress. This study provides reference significance for further research on thermal barrier coatings.展开更多
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.2024BRB010。
文摘CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high thermal conductivity of CuInSe_(2) limits the enhancement of its thermoelectric performance.Herein,we investigate the thermoelectric performance of N-type CuInSe_(2) materials by incorporating ZnSe through a solid solution strategy.A series of(CuInSe_(2))_(1-x)(ZnSe)_(x)(x=0.0,0.2,0.4,0.6,0.8,1.0)samples were synthesized,forming continuous solid solutions,while introducing minor porosity.ZnSe solid solution effectively reduces the lattice thermal conductivity of the CuInSe_(2) matrix at near-room temperatures,but has a weaker effect at higher temperatures.Due to the intrinsic low carrier concentration of the system,resulting in high resistivity,the maximum figure of merit(ZT)of(CuInSe_(2))0.8(ZnSe)0.2 reaches 0.08 at 773 K.Despite the relatively low ZT,the solid solution strategy proves effective in reducing the lattice thermal conductivity near-room temperature and offers potential for cost-effective thermoelectric materials.
基金This work was carried out in the framework of PAPIIT-UNAM(IN-205823)project.
文摘Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.
基金supported by the National Natural Science Foundation(No.51678291)the Basic Science(Natural Science)Research in Higher Education in Jiangsu Province(No.23KJA610003)the High-level Scientific Research Foundation for the introduction of talent in Nanjing Institute of Technology(No.YKJ201999)。
文摘Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.
基金funding support from the National Key R&D Program of China(2020YFC1909105)the 2023 Basic Research Foundation Project for Universities in the Inner Mongolia Autonomous Region(2023RCTD006)+1 种基金the Major Science and Technology Project of Inner Mongolia Autonomous Region(2021ZD0016)the National Natural Science Foundation of China(51664044).
文摘To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).
基金Project supported by the State Key Research Project of Shandong Natural Science Foundation(ZR2020KB019)the fund of"Two-Hundred Talent"Plan of Yantai City+1 种基金the National Natural Science Foundation of China(11974013)the Natural Science Foundation of Fujian Province(2022J011270)。
文摘The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.
基金Project (50974138) supported by the National Natural Science Foundation of ChinaProject (2010ssxt158) supported by Graduate Student Innovation Foundation of Central South University,China
文摘The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.
基金Project (2007CB613603) supported by the National Basic Research Program of China
文摘The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.
基金Project (BG2007030) supported by High-tech Research Program of Jiangsu Province, ChinaProject (07KJA43008) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (20070299004) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11675054 and 11435005+1 种基金Outstanding Doctoral Dissertation Cultivation Plan of Action under Grant No.YB2016039Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213
文摘In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.
基金Project(2132046)supported by the Beijing Natural Science Foundation,ChinaProject(51104007)supported by the National Natural Science Foundation of China
文摘Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
文摘Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
基金supported by the National Natural Science Foundation of China (40673043 and 20576073)the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-06-0088)
文摘Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escape contamination and recycle samples will ultimately govern the viability of ILs in the future industrial applications. Therefore, in this paper a new method for separation of ILs from their dilute aqueous solutions and simultaneously purification of water was proposed on the basis of the CO2 hydrate formation. For illustration, the dilute aqueous solutions with concentrations of ILs ranging from 2× 10^-3 mol% to 2×10^-1 mol% were concentrated. The results show that the separation efficiency is very impressive and that the new method is applicable to aqueous solutions of both hydrophobic and hydrophilic ILs. Compared to the literature separation method based on the supercritical CO2, the new method is applicable to lower concentrations, and more importantly, its operation condition is mild.
基金financially supported by the National Natural Science Foundation of China (Nos. 51571002 and 51401003)Beijing Municipal Natural Science Foundation(Nos. 2172008 and KZ201310005003)
文摘La2Ce2O7 (LCO) is a promising candidate for thermal barrier coatings (TBCs) due to that it provides better thermal insulation than yttria-stabilized zirconia (YSZ) does. In this work, a TBC LCO was produced by solution precursor plasma spraying (SPPS). After the solution precursors were prepared and the spraying parameters were optimized, the thermophysical properties and thermal shock performance of the coatings were tested. It was found that the SPPS coating with segmentation crack density of 6 mm^-1 had the porosities of about 33.5% at spray distances of 35 mm. The thermal conductivity of the SPPS coatings is 0.50-0.75 W·m^-1·K^-1, much lower than that of the atmospheric plasma spraying (APS) coatings (0.85-1.25 W·m^-1·K^-1). The thermal shock performance of the SPPS coatings reached 60 cycles, much better than the APS coatings. This improvement is due to the segmentation cracks in the coatings, which can improve strain tolerance and effectively relieve internal stress. This study provides reference significance for further research on thermal barrier coatings.