ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wett...ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.展开更多
γ-La2S3 nanoparticles were successfully prepared by thermal decomposition of lanthanum complex La(Et2S2CN)3·phen at low temperature. The obtained sample was characterized by the X-ray powder diffraction (XRD...γ-La2S3 nanoparticles were successfully prepared by thermal decomposition of lanthanum complex La(Et2S2CN)3·phen at low temperature. The obtained sample was characterized by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and element analysis. The decomposition mechanism of lanthanum complex was studied by thermogravimetric analyses (TGA). The results showed that the obtained samples were cubic phase particles with uniform sizes among 10–30 nm and γ-La2S3 was prepared by decomposition of La(Et2S2CN)3·phen via La4(Et2S2CN)3 as an intermediate product. The band gap of γ-La2S3 was 2.97 eV, which was bigger than bulk crystal because of pronounced quantum confinement effect.展开更多
Four nano-rare earth ternary complexes of L-glutamic acid and imidazole RE(Glu)3ImCl3·3H2O (RE=Ce^3+, Pr^3+, Sm^3+, Dy^3+, Glu= L-glutamic acid, and Im=imidazole) were synthesized. Their composition was c...Four nano-rare earth ternary complexes of L-glutamic acid and imidazole RE(Glu)3ImCl3·3H2O (RE=Ce^3+, Pr^3+, Sm^3+, Dy^3+, Glu= L-glutamic acid, and Im=imidazole) were synthesized. Their composition was characterized with elemental analysis, IR, and molar conductance. The TEM image indicated that the complexes were regular shaped and the length was about 30-60 nm. The antibacterial activity test showed that all these complexes exhibited better antibacterial ability against Escherichia coli, Staphylociccus aureus, and Candida albican (MIC were about 180, 100, and 310 μg/mi, respectively) and could be considered as broad-spectral antimicrobial. Their antitumor activity in vitro against leukemia K562 cells was measured using the MTr method. The results indicate that the four complexes possess strong inhibi- tion effect on leukemia K562 cells. An approximately linear relationship is discovered between the relative inhibition rate and concentration, with the correlation coefficients R〉0.7 and P〈0.05, which is considered statistically significant.展开更多
Precursors were prepared by solid state chemical reaction between LaCl_3 and C_2H_2O_4·2H_2O or NH_4HCO_3 at ambient temperature. Differential temperature analysis (DTA) and thermogravimetric analysis (TGA) were ...Precursors were prepared by solid state chemical reaction between LaCl_3 and C_2H_2O_4·2H_2O or NH_4HCO_3 at ambient temperature. Differential temperature analysis (DTA) and thermogravimetric analysis (TGA) were used to determine the decomposing temperature. Oxide (La_2O_3) was obtained by decomposing the precursor for about 2.5 h. X-ray diffraction (XRD), scanning electronic microscope (SEM) and ZETA potentiometer were respectively used to analyze the composition, morphology and size distribution of the products. The results show that La_2O_3 prepared by LaCl_3 and C_2H_2O_4·2H_2O is of ball-like shape and the diameter of particles (95%) is below 50 nm, while La_2O_3 prepared by LaCl_3 and NH_4HCO_3 is net-like.展开更多
1 Introduction The design and construction of metal-organic polymers has been a field of rapid growth in materials chemistry because of their intriguing topologies and potential applications as functional materials. ...1 Introduction The design and construction of metal-organic polymers has been a field of rapid growth in materials chemistry because of their intriguing topologies and potential applications as functional materials. In this regard, every effort has been devoted to the deliberate design and control of self-assembly infinite coordination networks via selecting the chemistry structures of ligands, Multidentate carboxylate ligands are widely adopted for construction of coordination frameworks due to their rich coordination modes.展开更多
Nano-Fe2O3/goldmine complex was obtained by chemical coprecipitation reaction on the surface of goldmine waste-solid. Being used as the heterogeneous catalyst in Fenton-like advanced oxidation processes (AOPs), its tr...Nano-Fe2O3/goldmine complex was obtained by chemical coprecipitation reaction on the surface of goldmine waste-solid. Being used as the heterogeneous catalyst in Fenton-like advanced oxidation processes (AOPs), its treatment effect was studied in the removal performance of industrial dyes effluent. Although the maximal COD removal efficiency would reach 35.4% when 5 mL NaClO was added in 100 mL industrial dyes effluent, it is found that by using nano-Fe2O3/goldmine system, the COD removal efficiency of 13,000 mg/L dyes wastewater could reach up to 75.5% in the presence of 30 g/L nano-Fe2O3/goldmine complex and 50 mL/L NaClO at 50。C.展开更多
Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emu...Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70℃. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed, 82.68 kJ/mol), number of micelles (0.163 × 10^18) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50-150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.展开更多
Fe46Co44B10/SiO2 nano-multilayers were synthesized by radio frequency magnetron sputtering. The thickness of individual layer was designed and controlled in nano-meter. The effect of thickness of ferromagnetic layer, ...Fe46Co44B10/SiO2 nano-multilayers were synthesized by radio frequency magnetron sputtering. The thickness of individual layer was designed and controlled in nano-meter. The effect of thickness of ferromagnetic layer, insulative layer or the total number of layers on the intrinsic characteristics and microwave permeability were investigated respectively. The results show that, saturation magnetization changes obviously with different thicknesses of ferromagnetic layer or insulative layer, but coercivity changes little and remains small. When the thickness of ferromagnetic layer and insulative layer keeps 1.5 and 1.3 nm respectively and the number of the total layers increases from 10 to 90, coercivity reduces and resistivity of the films improves from 0.25 to 2.22 π·m. The resonant frequency locates at the point higher than 2 GHz and the imaginary part of complex permeability at 2 GHz is larger than 150. These multilayer films can be applied in the field of micromagnetic devices or anti-interference of electromagnetic wave.展开更多
Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical wit...Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical with narrow particle size distribution (10 20 nm). The average particle size analysed with XRD is 16.7 nm. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and a vacuum of 10^-4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (1 × 10^-5 S·cm^-1 ) at room temperature is significantly increased compared to that of single crystal LaF3 (1 × 10^-6 S·cm^-1). A special phenomenon was observed firstly time that the ionic conductivity increased gradually with multiple testing in result of relaxation.展开更多
High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of...High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .展开更多
基金Project supported by the 973 Program of China (Grant No. 2006CB302900)National Natural Science Foundation of China(Grant No. 50872129)
文摘ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2009AA03Z431)
文摘γ-La2S3 nanoparticles were successfully prepared by thermal decomposition of lanthanum complex La(Et2S2CN)3·phen at low temperature. The obtained sample was characterized by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and element analysis. The decomposition mechanism of lanthanum complex was studied by thermogravimetric analyses (TGA). The results showed that the obtained samples were cubic phase particles with uniform sizes among 10–30 nm and γ-La2S3 was prepared by decomposition of La(Et2S2CN)3·phen via La4(Et2S2CN)3 as an intermediate product. The band gap of γ-La2S3 was 2.97 eV, which was bigger than bulk crystal because of pronounced quantum confinement effect.
基金the National Natural Science Foundation of China (20671063) Shanghai Scientific Committee (0552nm036, 0652nm045)Shanghai Leading Academic Discipline Project (T0402)
文摘Four nano-rare earth ternary complexes of L-glutamic acid and imidazole RE(Glu)3ImCl3·3H2O (RE=Ce^3+, Pr^3+, Sm^3+, Dy^3+, Glu= L-glutamic acid, and Im=imidazole) were synthesized. Their composition was characterized with elemental analysis, IR, and molar conductance. The TEM image indicated that the complexes were regular shaped and the length was about 30-60 nm. The antibacterial activity test showed that all these complexes exhibited better antibacterial ability against Escherichia coli, Staphylociccus aureus, and Candida albican (MIC were about 180, 100, and 310 μg/mi, respectively) and could be considered as broad-spectral antimicrobial. Their antitumor activity in vitro against leukemia K562 cells was measured using the MTr method. The results indicate that the four complexes possess strong inhibi- tion effect on leukemia K562 cells. An approximately linear relationship is discovered between the relative inhibition rate and concentration, with the correlation coefficients R〉0.7 and P〈0.05, which is considered statistically significant.
文摘Precursors were prepared by solid state chemical reaction between LaCl_3 and C_2H_2O_4·2H_2O or NH_4HCO_3 at ambient temperature. Differential temperature analysis (DTA) and thermogravimetric analysis (TGA) were used to determine the decomposing temperature. Oxide (La_2O_3) was obtained by decomposing the precursor for about 2.5 h. X-ray diffraction (XRD), scanning electronic microscope (SEM) and ZETA potentiometer were respectively used to analyze the composition, morphology and size distribution of the products. The results show that La_2O_3 prepared by LaCl_3 and C_2H_2O_4·2H_2O is of ball-like shape and the diameter of particles (95%) is below 50 nm, while La_2O_3 prepared by LaCl_3 and NH_4HCO_3 is net-like.
基金Supported by the National Natural Science Foundation of China(Nos. 20601007, 50472020 and 20773034)the Natural Science Foundation of Hebei Education Department, China(No.ZH2006002)+1 种基金the Natural Science Foundation of Hebei Province, China(No.B2008000143)the Doctoral Foundation of Hebei Normal University, China(No.103261).
文摘1 Introduction The design and construction of metal-organic polymers has been a field of rapid growth in materials chemistry because of their intriguing topologies and potential applications as functional materials. In this regard, every effort has been devoted to the deliberate design and control of self-assembly infinite coordination networks via selecting the chemistry structures of ligands, Multidentate carboxylate ligands are widely adopted for construction of coordination frameworks due to their rich coordination modes.
文摘Nano-Fe2O3/goldmine complex was obtained by chemical coprecipitation reaction on the surface of goldmine waste-solid. Being used as the heterogeneous catalyst in Fenton-like advanced oxidation processes (AOPs), its treatment effect was studied in the removal performance of industrial dyes effluent. Although the maximal COD removal efficiency would reach 35.4% when 5 mL NaClO was added in 100 mL industrial dyes effluent, it is found that by using nano-Fe2O3/goldmine system, the COD removal efficiency of 13,000 mg/L dyes wastewater could reach up to 75.5% in the presence of 30 g/L nano-Fe2O3/goldmine complex and 50 mL/L NaClO at 50。C.
文摘Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70℃. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed, 82.68 kJ/mol), number of micelles (0.163 × 10^18) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50-150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.
基金Project(60771028) supported by the National Natural Science Foundation of ChinaProject(20091208) supported by the Postdoctoral Foundation of Central South UniversityProject(PM200815) supported by State Key Laboratory of Powder Metallurgy
文摘Fe46Co44B10/SiO2 nano-multilayers were synthesized by radio frequency magnetron sputtering. The thickness of individual layer was designed and controlled in nano-meter. The effect of thickness of ferromagnetic layer, insulative layer or the total number of layers on the intrinsic characteristics and microwave permeability were investigated respectively. The results show that, saturation magnetization changes obviously with different thicknesses of ferromagnetic layer or insulative layer, but coercivity changes little and remains small. When the thickness of ferromagnetic layer and insulative layer keeps 1.5 and 1.3 nm respectively and the number of the total layers increases from 10 to 90, coercivity reduces and resistivity of the films improves from 0.25 to 2.22 π·m. The resonant frequency locates at the point higher than 2 GHz and the imaginary part of complex permeability at 2 GHz is larger than 150. These multilayer films can be applied in the field of micromagnetic devices or anti-interference of electromagnetic wave.
文摘Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical with narrow particle size distribution (10 20 nm). The average particle size analysed with XRD is 16.7 nm. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and a vacuum of 10^-4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (1 × 10^-5 S·cm^-1 ) at room temperature is significantly increased compared to that of single crystal LaF3 (1 × 10^-6 S·cm^-1). A special phenomenon was observed firstly time that the ionic conductivity increased gradually with multiple testing in result of relaxation.
文摘High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .