A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with st...A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with state-of-the-art Hermite integrator. It is shown that this regularization keeps some features that allow overcoming KS-regularization in some particular cases.展开更多
The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physica...The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.展开更多
Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal...Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal behavior of different physical parameters of active galactic nuclei (AGN) containing a super massive black hole (SMBH), an accretion disk, and a compact stellar cluster;2) calculation of the stellar capture rate to the central SMBH without accretion disk. The calculations show good perspectives for applications of the similarity method to optimize the evolution model calculations of large stellar systems and of AGN.展开更多
The N-body problem in classical physics, is the calculation of force ofgravitational attraction of heavenly bodies towards each other. Solving this problem for many heavenly bodies has always posed a challenge to phys...The N-body problem in classical physics, is the calculation of force ofgravitational attraction of heavenly bodies towards each other. Solving this problem for many heavenly bodies has always posed a challenge to physicists andmathematicians. Large number of bodies, huge masses, long distances and exponentially increasing number of equations of motion of the bodies have been themajor hurdles in solving this problem for large and complex galaxies. Adventof high performance computational machines have mitigated the problem to muchextent, but still for large number of bodies it consumes huge amount of resourcesand days for computation. Conventional algorithms have been able to reduce thecomputational complexity from O n2 ð Þ to O nlogn ð Þ by splitting the space into atree or mesh network, researchers are still looking for improvements. In thisresearch work we propose a novel solution to N-body problem inspired by metaheuristics algorithms. The proposed algorithm is simulated for various time periods of selected heavenly bodies and analyzed for speed and accuracy. Theresults are compared with that of conventional algorithms. The outcomes showabout 50% time saving with almost no loss in accuracy. The proposed approachbeing a metaheuristics optimization technique, attempts to find optimal solution tothe problem, searching the entire space in a unique and efficient manner in a verylimited amount of time.展开更多
We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole...We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole (SMBH) seeds at their centers. The purpose of this work is to study the mass and dynamical evolution of the initial SMBH seed during a Hubble cosmological time. It is a complementation of our previous paper with different initial orbit conditions and by introducing the SMBH seed in the initial galaxy. The disc of the secondary galaxy has a coplanar or polar orientation in relation to the disc of the primary galaxy and their initial orbit are eccentric and prograde. The primary and secondary galaxies have mass and size of Milky Way with an initial SMBH seed. We have found that the merger of the primary and secondary discs can result in a final normal disc or a final warped disc. After the fusion of discs, the final one is thicker and larger than the initial disc. The tidal effects are very important, modifying the evolution of the SMBH in the primary and secondary galaxy differently. The mass of the SMBH of the primary galaxy has increased by a factor ranging from 52 to 64 times the initial seed mass, depending on the experiment. However, the mass of the SMBH of the secondary galaxy has increased by a factor ranging from 6 to 33 times the initial SMBH seed mass, depending also on the experiment. Most of the accreted particles have come from the bulge and from the halo, depleting their particles. This could explain why the observations show that the SMBH with masses of approximatelyis found in many bulgeless galaxies. Only a small number of the accreted particles has come from the disc. In some cases of final merging stage of the two galaxies, the final SMBH of the secondary galaxy was ejected out of the galaxy.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ...As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
文摘A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with state-of-the-art Hermite integrator. It is shown that this regularization keeps some features that allow overcoming KS-regularization in some particular cases.
文摘The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.
文摘Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal behavior of different physical parameters of active galactic nuclei (AGN) containing a super massive black hole (SMBH), an accretion disk, and a compact stellar cluster;2) calculation of the stellar capture rate to the central SMBH without accretion disk. The calculations show good perspectives for applications of the similarity method to optimize the evolution model calculations of large stellar systems and of AGN.
基金This research study has been supported by National Center in Big Data and Cloud Computing,NED University of Engincering and Technology,Karachi,Pakistan.
文摘The N-body problem in classical physics, is the calculation of force ofgravitational attraction of heavenly bodies towards each other. Solving this problem for many heavenly bodies has always posed a challenge to physicists andmathematicians. Large number of bodies, huge masses, long distances and exponentially increasing number of equations of motion of the bodies have been themajor hurdles in solving this problem for large and complex galaxies. Adventof high performance computational machines have mitigated the problem to muchextent, but still for large number of bodies it consumes huge amount of resourcesand days for computation. Conventional algorithms have been able to reduce thecomputational complexity from O n2 ð Þ to O nlogn ð Þ by splitting the space into atree or mesh network, researchers are still looking for improvements. In thisresearch work we propose a novel solution to N-body problem inspired by metaheuristics algorithms. The proposed algorithm is simulated for various time periods of selected heavenly bodies and analyzed for speed and accuracy. Theresults are compared with that of conventional algorithms. The outcomes showabout 50% time saving with almost no loss in accuracy. The proposed approachbeing a metaheuristics optimization technique, attempts to find optimal solution tothe problem, searching the entire space in a unique and efficient manner in a verylimited amount of time.
文摘We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole (SMBH) seeds at their centers. The purpose of this work is to study the mass and dynamical evolution of the initial SMBH seed during a Hubble cosmological time. It is a complementation of our previous paper with different initial orbit conditions and by introducing the SMBH seed in the initial galaxy. The disc of the secondary galaxy has a coplanar or polar orientation in relation to the disc of the primary galaxy and their initial orbit are eccentric and prograde. The primary and secondary galaxies have mass and size of Milky Way with an initial SMBH seed. We have found that the merger of the primary and secondary discs can result in a final normal disc or a final warped disc. After the fusion of discs, the final one is thicker and larger than the initial disc. The tidal effects are very important, modifying the evolution of the SMBH in the primary and secondary galaxy differently. The mass of the SMBH of the primary galaxy has increased by a factor ranging from 52 to 64 times the initial seed mass, depending on the experiment. However, the mass of the SMBH of the secondary galaxy has increased by a factor ranging from 6 to 33 times the initial SMBH seed mass, depending also on the experiment. Most of the accreted particles have come from the bulge and from the halo, depleting their particles. This could explain why the observations show that the SMBH with masses of approximatelyis found in many bulgeless galaxies. Only a small number of the accreted particles has come from the disc. In some cases of final merging stage of the two galaxies, the final SMBH of the secondary galaxy was ejected out of the galaxy.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金supported by the National Natural Science Foundation of China(Nos.U24A2088,42177130,42277174,and 42477166).
文摘As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.