转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前...转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前依据转座过程中间体类型的不同可以将其分为I类转座子和II类转座子。Mutator超家族转座子是20世纪70年代在玉米(Zea may L.)中发现的一类特殊的转座子,其属于II类转座子,广泛存在于真核生物基因组中,包含遗传特征明晰可分的众多转座子家族。此外,该超家族转座子转座频率高,倾向于插入基因富含区及低拷贝序列区,可快速产生大量新的突变体,目前已被广泛应用于正向及反向遗传学研究。本文结合近年来相关研究结果,围绕Mutator超家族转座子的分类组成、结构特征、转座机制、插入偏好、靶位点重复序列以及玉米自主性MULEs元件展开综述,并对转座子研究面临的问题及未来研究方向进行了探讨,旨在与研究领域内的同行探讨相关研究的可能突破点、未来发展方向及可能产生的重大影响。展开更多
Mutants on stalk strength are essential materials for the studies on the formation of plant cell wall.In this study,a brittle stalk mutant of maize,designated as Bk-x,was screened from a Mutator inserted mutant librar...Mutants on stalk strength are essential materials for the studies on the formation of plant cell wall.In this study,a brittle stalk mutant of maize,designated as Bk-x,was screened from a Mutator inserted mutant library.At the germination and early seedling stage,the mutant plants were indistinguishable from the normal ones.However,all of the plant organs were brittle after the 5th-leaf stage and remained brittle throughout the rest of the growing period.Microstructure observation showed that the cell wall in vascular bundle sheath of Bk-x was thinner than that in normal plants.The leaf mechanical strength in Bk-x was 77.9% of that in normal plants growing at Xishuangbanna(BN),Yunnan province and that was 61.7% in Wuhan(WH),Hubei Province,China.The proportion of cellulose was 12.3% in Bk-x,which was significantly lower than that in normal plants(26.7%),while the soluble sugar content was 36.1% in Bk-x,which is significantly higher than that in normal plants(12.4%).Genetic analysis using two F 2 populations and one F 2:3 families demonstrated that the trait of brittle stalk is controlled by a single recessive gene.展开更多
AIM: To clarify possible contributions of DNA mismatch repair (MMR) system in carcinogenesis of liver fluke infection-associated intrahepatic cholangiocarcinoma (ICC) by using immunohistochemical assay. METHODS:...AIM: To clarify possible contributions of DNA mismatch repair (MMR) system in carcinogenesis of liver fluke infection-associated intrahepatic cholangiocarcinoma (ICC) by using immunohistochemical assay. METHODS: A total of 29 ICC samples, which had been assessed for genomic instability by a PCR-based method, were used for study. They were examined immunohistochemically to demonstrate protein expression of two MMR genes, hMSH2 and hMLH1. Results obtained were compared with their mutator phenotype assessed previously. RESULTS: Either hMSH2 or hMLH1 protein was obviously expressed in 28 of 29 (96.6%) ICC samples. Positive nuclear localization of hMSH2 or hMLH1 protein was observed in 86.2% (25/29) or 93.1% (27/29) ICC cases, respectively, while their negative nuclear reactivity was only detected in 13.8% (4/29) or 6.9% (2/29) ICC cases analyzed, respectively. CONCLUSION: Our study, probably for the first time, showed through immunohistochemical detection of hMSH2 and hMLH1 gene that DNA MMR system does not play a prominent role in liver fluke infection-associatedcholangiocarcinogenesis. These results confirm previous findings on mutational status of these genes assessed through a PCR-based method. The immunohistochemical analysis has proven to be an effective and sensitive approach for screening MMR deficiency regardless of somatic inactivation or promoter hypermethylation of hMSH2 and/or hMLH1 gene. Furthermore, immunohistochemistry is more advantageous compared to mutator phenotyping assay in terms of simplicity, less time consuming and cost effectiveness for screening possible involvements of target MMR genes in tumorigenesis.展开更多
Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, te...Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, termed the double selected amplification of insertion flanking fragments (DSAIFF), was employed to isolate the Mu flanking fragments (MFFs) of miol6. The target site duplications (TSDs) isolated from the Msp I and Mse I digested MFFs had a same 9-bp sequence and were confirmed to be the flanking sequence of one identically inserted gene. Co-segregation analysis suggested that the MFFs were associated with the mutant opaque endosperm, and miol6 was mapped in silico onto the physical position ranged from 229 965 021 to 229 965 409 bp of the maize chromosome 4.09 bin. The full-length cDNA of the wild-type gene was obtained by an RT-PCR primer-scanning technique, and Mio16 was found to putatively encode a homolog of the Arabidopsis MAP3K delta-1 protein kinase. RT-PCR result the mRNA expression of miol6 region anchored by primers Mu20 and af276 was not interrupted by Mu insertion. Further researches will be done to elucidate how the expression of miol6 is alternated by Mu insertion.展开更多
Objective: In order to elucidate the molecular mechanisms that might be responsible for hepatocarcinogenesis, we examined microsatellite instability (MSI), mismatch repair gene hMLH1 mutation and methylation in hepato...Objective: In order to elucidate the molecular mechanisms that might be responsible for hepatocarcinogenesis, we examined microsatellite instability (MSI), mismatch repair gene hMLH1 mutation and methylation in hepatocellular carcinoma. Methods: Fifty-two cases of surgically resected sporadic hepatocellular carcinoma (HCC) were studied. hMLH1 mutation was examined by two-dimensional electrophoresis and DNA sequencing; hMLH1 methylation was determined by methylation-specific PCR(MSP); and MSI at BAT26 was analyzed by PCR-based methods. Results: MSI at BAT26 was found in 3 of 52 cases (5.8%) of the tumors analyzed. No hMLH1 mutation or hypermethylation was found in these 52 cancerous tissues. No correlation existed between MSI and clinico-pathological characteristics of the patients. Conclusion: Our results suggest that MSI at BAT26 is rarely associated with carcinogenesis of chinese HCC. The genesis of sporadic HCC may occur in an alternative pathway that is probably different from MSI pathway.展开更多
Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small population...Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small populations,genetic purging that occurs under the pressure of natural selection acts as an opposing force,contributing to a reduction of deleterious alleles.Both inbreeding and genetic purging are paramount in the field of conservation genomics.The Amur tiger(Panthera tigris altaica)lives in small populations in the forests of Northeast Asia and is among the most endangered animals on the planet.Using genome-wide assessment and comparison,we reveal substantially higher and more extensive inbreeding in wild Amur tigers(F_(ROH)=0.50)than in captive individuals(F_(ROH)=0.24).However,a relatively reduced number of lossof-function mutations in wild Amur tigers is observed compared to captive individuals,indicating genetic purging of inbreeding load with relatively large-effect alleles.The higher ratio of homozygous mutation load and number of fixed damaging alleles in the wild population indicates a less-efficient genetic purging,with purifying selection also contributing to this process.These findings provide valuable insights for the future conservation of Amur tigers.展开更多
The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains lar...The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.展开更多
Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and ...Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and broader Asia.However,long-term TWSC characterization remains challenging due to limited observational data in this alpine region.Here,we integrate GRACE observations(2002-2020),ERA5-Land reanalysis,and GLDAS data to reconstruct TWSC using two methods:(1)the water balance method(PER)and(2)the component summation method(SS),applied to three input datasets(ERA5-Land,GLDAS,and their average,GLER).Comparative analysis reveals that the SS method applied to GL-ER yields the highest consistency with GRACE-derived TWSC.Using this optimal approach,we extend the analysis to 1951~2020,uncovering spatiotemporal TWSC patterns.Although annual TWSC trends appear negligible due to strong seasonality,we introduce the intra-year TWSC fluctuation(TWSCF)index to quantify cumulative variability.A significant(p<0.05)transition occurred in 1980,with TWSCF shifting from a declining trend(-0.39 mm/yr)to an increasing trend(0.56 mm/yr),primarily driven by soil moisture changes.However,Hurst exponent analysis suggests this upward trend may not persist.Drought and vegetation assessments indicate concurrent wetting and greening in the TRSR.TWSC correlates strongly with meteorological drought,acting as a reliable drought indicator while its linkage with vegetation dynamics suggests a potential contribution to greening.Our findings provide a robust framework for understanding long-term TWSC evolution and its hydrological-ecological interactions under climate change.展开更多
Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apopt...Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apoptosis in glaucoma.Modulation of Kir4.1 expression in Müller cells may therefore be a potential strategy for attenuating retinal ganglion cell damage in glaucoma.In this study,we identified seven predicted phosphorylation sites in Kir4.1 and constructed lentiviral expression systems expressing Kir4.1 mutated at each site to prevent phosphorylation.Following this,we treated Müller glial cells in vitro and in vivo with the m Glu R I agonist DHPG to induce Kir4.1 or Kir4.1 Tyr^(9)Asp overexpression.We found that both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited activation of Müller glial cells.Subsequently,we established a rat model of chronic ocular hypertension by injecting microbeads into the anterior chamber and overexpressed Kir4.1 or Kir4.1 Tyr^(9)Asp in the eye,and observed similar results in Müller cells in vivo as those seen in vitro.Both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited Müller cell activation,regulated the balance of Bax/Bcl-2,and reduced the m RNA and protein levels of pro-inflammatory factors,including interleukin-1βand tumor necrosis factor-α.Furthermore,we investigated the regulatory effects of Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression on the release of pro-inflammatory factors in a co-culture system of Müller glial cells and microglia.In this co-culture system,we observed elevated adenosine triphosphate concentrations in activated Müller cells,increased levels of translocator protein(a marker of microglial activation),and elevated interleukin-1βm RNA and protein levels in microglia induced by activated Müller cells.These changes could be reversed by Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression in Müller cells.Kir4.1 overexpression,but not Kir4.1 Tyr^(9)Asp overexpression,reduced the number of proliferative and migratory microglia induced by activated Müller cells.Collectively,these results suggest that the tyrosine residue at position nine in Kir4.1 may serve as a functional modulation site in the retina in an experimental model of glaucoma.Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression attenuated Müller cell activation,reduced ATP/P2X receptor–mediated interactions between glial cells,inhibited microglial activation,and decreased the synthesis and release of pro-inflammatory factors,consequently ameliorating retinal ganglion cell apoptosis in glaucoma.展开更多
文摘转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前依据转座过程中间体类型的不同可以将其分为I类转座子和II类转座子。Mutator超家族转座子是20世纪70年代在玉米(Zea may L.)中发现的一类特殊的转座子,其属于II类转座子,广泛存在于真核生物基因组中,包含遗传特征明晰可分的众多转座子家族。此外,该超家族转座子转座频率高,倾向于插入基因富含区及低拷贝序列区,可快速产生大量新的突变体,目前已被广泛应用于正向及反向遗传学研究。本文结合近年来相关研究结果,围绕Mutator超家族转座子的分类组成、结构特征、转座机制、插入偏好、靶位点重复序列以及玉米自主性MULEs元件展开综述,并对转座子研究面临的问题及未来研究方向进行了探讨,旨在与研究领域内的同行探讨相关研究的可能突破点、未来发展方向及可能产生的重大影响。
基金supported by the National High-Tech R&D Program of China(2006AA10A106)
文摘Mutants on stalk strength are essential materials for the studies on the formation of plant cell wall.In this study,a brittle stalk mutant of maize,designated as Bk-x,was screened from a Mutator inserted mutant library.At the germination and early seedling stage,the mutant plants were indistinguishable from the normal ones.However,all of the plant organs were brittle after the 5th-leaf stage and remained brittle throughout the rest of the growing period.Microstructure observation showed that the cell wall in vascular bundle sheath of Bk-x was thinner than that in normal plants.The leaf mechanical strength in Bk-x was 77.9% of that in normal plants growing at Xishuangbanna(BN),Yunnan province and that was 61.7% in Wuhan(WH),Hubei Province,China.The proportion of cellulose was 12.3% in Bk-x,which was significantly lower than that in normal plants(26.7%),while the soluble sugar content was 36.1% in Bk-x,which is significantly higher than that in normal plants(12.4%).Genetic analysis using two F 2 populations and one F 2:3 families demonstrated that the trait of brittle stalk is controlled by a single recessive gene.
基金Supported by Ministry of Education, Culture, Sports,Science and Technology of Japan
文摘AIM: To clarify possible contributions of DNA mismatch repair (MMR) system in carcinogenesis of liver fluke infection-associated intrahepatic cholangiocarcinoma (ICC) by using immunohistochemical assay. METHODS: A total of 29 ICC samples, which had been assessed for genomic instability by a PCR-based method, were used for study. They were examined immunohistochemically to demonstrate protein expression of two MMR genes, hMSH2 and hMLH1. Results obtained were compared with their mutator phenotype assessed previously. RESULTS: Either hMSH2 or hMLH1 protein was obviously expressed in 28 of 29 (96.6%) ICC samples. Positive nuclear localization of hMSH2 or hMLH1 protein was observed in 86.2% (25/29) or 93.1% (27/29) ICC cases, respectively, while their negative nuclear reactivity was only detected in 13.8% (4/29) or 6.9% (2/29) ICC cases analyzed, respectively. CONCLUSION: Our study, probably for the first time, showed through immunohistochemical detection of hMSH2 and hMLH1 gene that DNA MMR system does not play a prominent role in liver fluke infection-associatedcholangiocarcinogenesis. These results confirm previous findings on mutational status of these genes assessed through a PCR-based method. The immunohistochemical analysis has proven to be an effective and sensitive approach for screening MMR deficiency regardless of somatic inactivation or promoter hypermethylation of hMSH2 and/or hMLH1 gene. Furthermore, immunohistochemistry is more advantageous compared to mutator phenotyping assay in terms of simplicity, less time consuming and cost effectiveness for screening possible involvements of target MMR genes in tumorigenesis.
基金supported by the High-Tech R&D Program of China(2006AA10A106)the open funds of the National Key Laboratory of Crop Genetic Improvement and China National Fundamental Fund of Personnel Training (J0730649)
文摘Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, termed the double selected amplification of insertion flanking fragments (DSAIFF), was employed to isolate the Mu flanking fragments (MFFs) of miol6. The target site duplications (TSDs) isolated from the Msp I and Mse I digested MFFs had a same 9-bp sequence and were confirmed to be the flanking sequence of one identically inserted gene. Co-segregation analysis suggested that the MFFs were associated with the mutant opaque endosperm, and miol6 was mapped in silico onto the physical position ranged from 229 965 021 to 229 965 409 bp of the maize chromosome 4.09 bin. The full-length cDNA of the wild-type gene was obtained by an RT-PCR primer-scanning technique, and Mio16 was found to putatively encode a homolog of the Arabidopsis MAP3K delta-1 protein kinase. RT-PCR result the mRNA expression of miol6 region anchored by primers Mu20 and af276 was not interrupted by Mu insertion. Further researches will be done to elucidate how the expression of miol6 is alternated by Mu insertion.
文摘Objective: In order to elucidate the molecular mechanisms that might be responsible for hepatocarcinogenesis, we examined microsatellite instability (MSI), mismatch repair gene hMLH1 mutation and methylation in hepatocellular carcinoma. Methods: Fifty-two cases of surgically resected sporadic hepatocellular carcinoma (HCC) were studied. hMLH1 mutation was examined by two-dimensional electrophoresis and DNA sequencing; hMLH1 methylation was determined by methylation-specific PCR(MSP); and MSI at BAT26 was analyzed by PCR-based methods. Results: MSI at BAT26 was found in 3 of 52 cases (5.8%) of the tumors analyzed. No hMLH1 mutation or hypermethylation was found in these 52 cancerous tissues. No correlation existed between MSI and clinico-pathological characteristics of the patients. Conclusion: Our results suggest that MSI at BAT26 is rarely associated with carcinogenesis of chinese HCC. The genesis of sporadic HCC may occur in an alternative pathway that is probably different from MSI pathway.
基金supported by the Fundamental Research Funds for the Central Universities of China(2572022DQ03)the National Natural Science Foundation of China(32170517)+2 种基金the Guangdong Provincial Key Laboratory of Genome Read and Write(2017B030301011)the Start-up Scientific Foundation of Northeast Forestry University(60201524043)supported by China National GeneBank(CNGB).
文摘Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small populations,genetic purging that occurs under the pressure of natural selection acts as an opposing force,contributing to a reduction of deleterious alleles.Both inbreeding and genetic purging are paramount in the field of conservation genomics.The Amur tiger(Panthera tigris altaica)lives in small populations in the forests of Northeast Asia and is among the most endangered animals on the planet.Using genome-wide assessment and comparison,we reveal substantially higher and more extensive inbreeding in wild Amur tigers(F_(ROH)=0.50)than in captive individuals(F_(ROH)=0.24).However,a relatively reduced number of lossof-function mutations in wild Amur tigers is observed compared to captive individuals,indicating genetic purging of inbreeding load with relatively large-effect alleles.The higher ratio of homozygous mutation load and number of fixed damaging alleles in the wild population indicates a less-efficient genetic purging,with purifying selection also contributing to this process.These findings provide valuable insights for the future conservation of Amur tigers.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20242059)the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province(PCMGH-2023-02)the opening fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105827-FW202209)are gratefully acknowledged.
文摘The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.
基金funded by the Postdoctoral Research Startup Foundation of University of Jinan(Grant No.100389917).
文摘Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and broader Asia.However,long-term TWSC characterization remains challenging due to limited observational data in this alpine region.Here,we integrate GRACE observations(2002-2020),ERA5-Land reanalysis,and GLDAS data to reconstruct TWSC using two methods:(1)the water balance method(PER)and(2)the component summation method(SS),applied to three input datasets(ERA5-Land,GLDAS,and their average,GLER).Comparative analysis reveals that the SS method applied to GL-ER yields the highest consistency with GRACE-derived TWSC.Using this optimal approach,we extend the analysis to 1951~2020,uncovering spatiotemporal TWSC patterns.Although annual TWSC trends appear negligible due to strong seasonality,we introduce the intra-year TWSC fluctuation(TWSCF)index to quantify cumulative variability.A significant(p<0.05)transition occurred in 1980,with TWSCF shifting from a declining trend(-0.39 mm/yr)to an increasing trend(0.56 mm/yr),primarily driven by soil moisture changes.However,Hurst exponent analysis suggests this upward trend may not persist.Drought and vegetation assessments indicate concurrent wetting and greening in the TRSR.TWSC correlates strongly with meteorological drought,acting as a reliable drought indicator while its linkage with vegetation dynamics suggests a potential contribution to greening.Our findings provide a robust framework for understanding long-term TWSC evolution and its hydrological-ecological interactions under climate change.
基金supported by the National Natural Science Foundation of China,Nos.32271043(to ZW)and 82171047(to YM)the both Science and Technology Major Project of Shanghai,No.2018SHZDZX01 and ZJLabShanghai Center for Brain Science and Brain-Inspired Technology(to ZW)。
文摘Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apoptosis in glaucoma.Modulation of Kir4.1 expression in Müller cells may therefore be a potential strategy for attenuating retinal ganglion cell damage in glaucoma.In this study,we identified seven predicted phosphorylation sites in Kir4.1 and constructed lentiviral expression systems expressing Kir4.1 mutated at each site to prevent phosphorylation.Following this,we treated Müller glial cells in vitro and in vivo with the m Glu R I agonist DHPG to induce Kir4.1 or Kir4.1 Tyr^(9)Asp overexpression.We found that both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited activation of Müller glial cells.Subsequently,we established a rat model of chronic ocular hypertension by injecting microbeads into the anterior chamber and overexpressed Kir4.1 or Kir4.1 Tyr^(9)Asp in the eye,and observed similar results in Müller cells in vivo as those seen in vitro.Both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited Müller cell activation,regulated the balance of Bax/Bcl-2,and reduced the m RNA and protein levels of pro-inflammatory factors,including interleukin-1βand tumor necrosis factor-α.Furthermore,we investigated the regulatory effects of Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression on the release of pro-inflammatory factors in a co-culture system of Müller glial cells and microglia.In this co-culture system,we observed elevated adenosine triphosphate concentrations in activated Müller cells,increased levels of translocator protein(a marker of microglial activation),and elevated interleukin-1βm RNA and protein levels in microglia induced by activated Müller cells.These changes could be reversed by Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression in Müller cells.Kir4.1 overexpression,but not Kir4.1 Tyr^(9)Asp overexpression,reduced the number of proliferative and migratory microglia induced by activated Müller cells.Collectively,these results suggest that the tyrosine residue at position nine in Kir4.1 may serve as a functional modulation site in the retina in an experimental model of glaucoma.Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression attenuated Müller cell activation,reduced ATP/P2X receptor–mediated interactions between glial cells,inhibited microglial activation,and decreased the synthesis and release of pro-inflammatory factors,consequently ameliorating retinal ganglion cell apoptosis in glaucoma.