The problem of estimating an image corrupted by additive white Gaussian noise has been of interest for practical reasons. Non-linear denoising methods based on wavelets, have become popular but Multiwavelets outperfor...The problem of estimating an image corrupted by additive white Gaussian noise has been of interest for practical reasons. Non-linear denoising methods based on wavelets, have become popular but Multiwavelets outperform wavelets in image denoising. Multiwavelets are wavelets with several scaling and wavelet functions, offer simultaneously Orthogonality, Symmetry, Short support and Vanishing moments, which is not possible with ordinary (scalar) wavelets. These properties make Multiwavelets promising for image processing applications, such as image denoising. The aim of this paper is to apply various non-linear thresholding techniques such as hard, soft, universal, modified universal, fixed and multivariate thresholding in Multiwavelet transform domain such as Discrete Multiwavelet Transform, Symmetric Asymmetric (SA4), Chui Lian (CL), and Bi-Hermite (Bih52S) for different Multiwavelets at different levels, to denoise an image and determine the best one out of it. The performance of denoising algorithms and various thresholding are measured using quantitative performance measures such as, Mean Square Error (MSE), and Root Mean Square Error (RMSE), Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR). It is found that CL Multiwavelet transform in combination with modified universal thresholding has given best results.展开更多
A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of ...A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of the multiwavelet domain and these subblocks have many similarities. Watermark bits are added to low- frequency coefficients. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results demonstrate that the new algorithm is robust against a variety of attacks, especially, the watermark extraction does not require the original image.展开更多
A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to...A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms.展开更多
Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs compari...Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.展开更多
文摘The problem of estimating an image corrupted by additive white Gaussian noise has been of interest for practical reasons. Non-linear denoising methods based on wavelets, have become popular but Multiwavelets outperform wavelets in image denoising. Multiwavelets are wavelets with several scaling and wavelet functions, offer simultaneously Orthogonality, Symmetry, Short support and Vanishing moments, which is not possible with ordinary (scalar) wavelets. These properties make Multiwavelets promising for image processing applications, such as image denoising. The aim of this paper is to apply various non-linear thresholding techniques such as hard, soft, universal, modified universal, fixed and multivariate thresholding in Multiwavelet transform domain such as Discrete Multiwavelet Transform, Symmetric Asymmetric (SA4), Chui Lian (CL), and Bi-Hermite (Bih52S) for different Multiwavelets at different levels, to denoise an image and determine the best one out of it. The performance of denoising algorithms and various thresholding are measured using quantitative performance measures such as, Mean Square Error (MSE), and Root Mean Square Error (RMSE), Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR). It is found that CL Multiwavelet transform in combination with modified universal thresholding has given best results.
基金The National Natural Science Foundation of China(No60473015)
文摘A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of the multiwavelet domain and these subblocks have many similarities. Watermark bits are added to low- frequency coefficients. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results demonstrate that the new algorithm is robust against a variety of attacks, especially, the watermark extraction does not require the original image.
文摘A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms.
文摘Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.