期刊文献+
共找到1,029篇文章
< 1 2 52 >
每页显示 20 50 100
Multivariate error assessment of response time histories method for dynamic systems 被引量:1
1
作者 Zhen-fei ZHAN Jie HU +3 位作者 Yan FU Ren-Jye YANG Ying-hong PENG Jin QI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第2期121-131,共11页
In this paper, an integrated validation method and process are developed for multivariate dynamic systems. The principal component analysis approach is used to address multivariate correlation and dimensionality reduc... In this paper, an integrated validation method and process are developed for multivariate dynamic systems. The principal component analysis approach is used to address multivariate correlation and dimensionality reduction, the dynamic time warping and correlation coefficient are used for error assessment, and the subject matter experts (SMEs)’ opinions and principal component analysis coefficients are incorporated to provide the overall rating of the dynamic system. The proposed method and process are successfully demonstrated through a vehicle dynamic system problem. 展开更多
关键词 Model validation multivariate dynamic resnonses. Princioal component analvsis. Dvnamic time warping
原文传递
Software Watermarking Scheme Based on Multivariate Public Key Cryptosystem
2
作者 SUN Xiaoyan ZHANG Maosheng +2 位作者 MAO Shaowu REN Zhengwei ZHANG Huanguo 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第3期257-261,共5页
Software watermarking is an efficient tool to verify the copyright of software. Public key cryptosystem-based watermarking is widely researched. However, the popular public key cryptosystem is not secure under quantum... Software watermarking is an efficient tool to verify the copyright of software. Public key cryptosystem-based watermarking is widely researched. However, the popular public key cryptosystem is not secure under quantum algorithm. This paper proposes a novel soft-ware watermarking scheme based on multivariate public key cryptosystem. The copyright information generated by copyright holder is transformed into copyright numbers using multivariate quadratic polynomial equations inspired by multivariate public key cryptosystem (MPKC). Every polynomial is embedded into the host program independently. Based on the security performance of MPKC, the robustness and invisibility of the proposed scheme is significantly improved in comparison with the RSA-based watermarking method. 展开更多
关键词 SOFTWARE WATERMARKING multivariate CRYPTOsystem COPYRIGHT
原文传递
SPECTROPHOTOMETRIC ANALYSIS OF MIXTURES OF TRACE METAL BY DOUBLE-SYSTEM AND MULTIVARIATE CALIRRATION
3
作者 Yong Nian NI Xin Ming YIN Department of Chemistry,Jiangxi University,Nanchang,33007 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第2期157-158,共2页
In this paper,a new method for simultaneous spectrophotometric analysis of multi- component with double-system was developed.The multivariate calibration method,principal component analysis-partial least squares(PCA-P... In this paper,a new method for simultaneous spectrophotometric analysis of multi- component with double-system was developed.The multivariate calibration method,principal component analysis-partial least squares(PCA-PLS),was described and applied to the processing of measurement data.A demonstration,simultaneous determination of cobalt,nickel,copper,zinc and iron with double-system(5-Br-PADAP and PAR as chromogenic chelate reagents,respectively) was given.The results showed that the method with douhle-system gave better precision than those with single system and MLR(in this paper,AKC method was selected)did not give satis- fied precision in any situation. 展开更多
关键词 PLS PCR SPECTROPHOTOMETRIC ANALYSIS OF MIXTURES OF TRACE METAL BY DOUBLE-system AND multivariate CALIRRATION APPI RSD
在线阅读 下载PDF
Two Stage Estimation and Its Covariance Matrix in Multivariate Seemingly Unrelated Regression System
4
作者 WANG Shi-qing YANG qiao LIU fa-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期397-401,共5页
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
关键词 multivariate seemingly unrelated regression system two stage estimation covariance matrix unrestricted estimator
在线阅读 下载PDF
Design of a Multimodal Light Sheet Optical System for Multivariate Applications in Phytopathology
5
作者 Mama Sangare Mathieu Hebert +1 位作者 Anthony Cazier Pierre Chavel 《Optics and Photonics Journal》 2021年第5期110-120,共11页
The design of optical instruments is an active subject due to improvement in lens techniques, fabrication technology, and data handling capacity. Much remains to do to expand its application to phytopathology, which w... The design of optical instruments is an active subject due to improvement in lens techniques, fabrication technology, and data handling capacity. Much remains to do to expand its application to phytopathology, which would be in particular quite useful to improve crop growth monitoring in countries like Mali. An optical multimodal system for plant samples has been developed to improve the characterization of leaf disease symptoms, provide information on their effects, and avoid their spread. Potentially inexpensive components (laser, lens, turntables camera and sample, filter, lens, camera and computer) have been selected, assembled and aligned on an optical table into a multimodal system operating in transmission, reflection, diffusion and fluorescence. The illumination and observation angles can be adjusted to optimize viewing conditions in the four modes. This scientific contribution has been an initiation into the design and implementation of an optical instrument. Initial results are shown and will now be extended in cooperation with agronomic laboratories in African countries for tests on specific plant diseases in relation with prevailing climate conditions. 展开更多
关键词 DESIGN Optical system Light Sheet MULTIMODAL multivariate PHYTOPATHOLOGY
在线阅读 下载PDF
On the Zero Coprime Equivalence of Multivariate Polynomial Matrices
6
作者 CHEN Zuo LI Dongmei GUO Xu 《Wuhan University Journal of Natural Sciences》 2025年第1期32-42,共11页
The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first dis... The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results. 展开更多
关键词 multidimensional system multivariate polynomial matrix zero coprime equivalence unimodular equivalence Smith normal form
原文传递
Multivariate natural gas price forecasting model with feature selection,machine learning and chernobyl disaster optimizer
7
作者 Pei Du Xuan-Kai Zhang +1 位作者 Jun-Tao Du Jian-Zhou Wang 《Petroleum Science》 2025年第11期4823-4837,共15页
The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and a... The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and addressing environmental challenges.However,natural gas prices are affected by multiple source factors,presenting complex,unstable nonlinear characteristics hindering the improvement of the prediction accuracy of existing models.To address this issue,this study proposes an innovative multivariate combined forecasting model for natural gas prices.Initially,the study meticulously identifies and introduces 16 variables impacting natural gas prices across five crucial dimensions:the production,marketing,commodities,political and economic indicators of the United States and temperature.Subsequently,this study employs the least absolute shrinkage and selection operator,grey relation analysis,and random forest for dimensionality reduction,effectively screening out the most influential key variables to serve as input features for the subsequent learning model.Building upon this foundation,a suite of machine learning models is constructed to ensure precise natural gas price prediction.To further elevate the predictive performance,an intelligent algorithm for parameter optimization is incorporated,addressing potential limitations of individual models.To thoroughly assess the prediction accuracy of the proposed model,this study conducts three experiments using monthly natural gas trading prices.These experiments incorporate 19 benchmark models for comparative analysis,utilizing five evaluation metrics to quantify forecasting effectiveness.Furthermore,this study conducts in-depth validation of the proposed model's effectiveness through hypothesis testing,discussions on the improvement ratio of forecasting performance,and case studies on other energy prices.The empirical results demonstrate that the multivariate combined forecasting method developed in this study surpasses other comparative models in forecasting accuracy.It offers new perspectives and methodologies for natural gas price forecasting while also providing valuable insights for other energy price forecasting studies. 展开更多
关键词 Natural gas price forecasting multivariate forecasting model Machine learning Chernobyl disaster optimizer
原文传递
A prediction comparison between univariate and multivariate chaotic time series 被引量:3
8
作者 王海燕 朱梅 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期414-417,共4页
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim... The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error. 展开更多
关键词 multivariate chaotic time series phase space reconstruction PREDICTION neural networks
在线阅读 下载PDF
Performance of the geometric approach to fault detection and isolation in SISO,MISO,SIMO and MIMO systems 被引量:2
9
作者 RAHIMI N. SADEGHI M. H. MAHJOOB M. J. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1443-1451,共9页
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single... In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one. 展开更多
关键词 Fault detection and isolation (FDI) multivariate systems Parametric system identification Linear regression Distance functions
在线阅读 下载PDF
MULTIVARIATE ABSOLUTE DEGREE OF GREY INCIDENCE BASED ON DISTRIBUTION CHARACTERISTICS OF POINTS
10
作者 张可 王岩 +1 位作者 辛江慧 许叶军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期145-151,共7页
The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence ba... The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model. 展开更多
关键词 grey system absolute degree of grey incidences multivariate time series similarity measure
在线阅读 下载PDF
Multivariate Analysis of Community Structure Variation of Plankton and Zoobenthos in Municipal Polluted River
11
作者 麦戈 利锋 +2 位作者 吴昌华 段志鹏 曾祥云 《Agricultural Science & Technology》 CAS 2012年第8期1776-1780,共5页
[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shan... [Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area. 展开更多
关键词 Municipal polluted river PLANKTON multivariate analysis Shannon-Wiener diversity index
在线阅读 下载PDF
Monotonicity of the tail dependence for multivariate t-copula
12
作者 石爱菊 林金官 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期466-470,共5页
This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tai... This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution. 展开更多
关键词 multivariate t-copula COPULA inverse gamma distribution MONOTONICITY regularly varying function correlation coefficient
在线阅读 下载PDF
A New Method for Constructing the Inversion of Multivariable Linear Systems
13
作者 张新建 童丽 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第4期18-24,共7页
A new algorithm for constructing an inverse of a multivariable linear system is presented. This algorithm makes the constructing an inverse of the higher order matrices into searching for the equivalent normal form o... A new algorithm for constructing an inverse of a multivariable linear system is presented. This algorithm makes the constructing an inverse of the higher order matrices into searching for the equivalent normal form of the lower order matrices. Consequently, the calculation is more simple efficient and programmed than previous methods. Another result of the paper is that the lower reduced inverse system is obtained, by selecting special bases of the observable space of the original systems, it reveals the effect of the observability of the original systems on the order of the inverse systems. 展开更多
关键词 multivariable linear system inverse system orthogonal decomposition
在线阅读 下载PDF
Direct UV photolysis of cloperastine in aqueous solution:Kinetic model and degradation pathwa
14
作者 Marc Marín-García Rafael Gonzalez-Olmos Cristian Gómez-Canela 《Journal of Environmental Sciences》 2026年第1期670-682,共13页
The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technol... The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants. 展开更多
关键词 Cloperastine UV photolysis UHPLC-QTOF-MS/MS Kinetic model Degradation pathway Hard-soft multivariate curve resolution-alternating least squares (HS-MCR-ALS)
原文传递
Study on QSAR of Taxol and its Derivatives Based on Stepwise Multivariate Linear Regression Analysis 被引量:1
15
作者 刘艾林 迟翰林 《Journal of Chinese Pharmaceutical Sciences》 CAS 1997年第1期21-25,共5页
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun... Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities. 展开更多
关键词 TAXOL Stepwise multivariate linear regression (SMLR) Molar refractivity
全文增补中
Reliability analysis of structure with random parameters based on multivariate power polynomial expansion 被引量:2
16
作者 李烨君 黄斌 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期59-63,共5页
A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, struc... A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time. 展开更多
关键词 RELIABILITY random parameters multivariable power polynomial expansion perturbation technique Galerkin projection
在线阅读 下载PDF
Multivariate adaptive regression splines and neural network models for prediction of pile drivability 被引量:42
17
作者 Wengang Zhang Anthony T.C.Goh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期45-52,共8页
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and... Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. 展开更多
关键词 Back propagation neural network multivariate adaptive regression splines Pile drivability Computational efficiency NONLINEARITY
在线阅读 下载PDF
Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management 被引量:26
18
作者 Jian Zhao Guo Fu Kun Lei Yanwu Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第9期1460-1471,共12页
Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 200... Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 2003–2008 to investigate spatio-temporal variations and identify potential pollution sources.Using cluster analysis,the twelve months of the year were classified into three periods of lowflow (LF),normal-flow (NF),and high-flow (HF);and the 37 monitoring sites were divided into low pollution (LP),moderate pollution (MP),and high pollution (HP).Dissolved oxygen (DO),potassium permanganate index (COD Mn ),and ammonia-nitrogen (NH 4 +-N) were identified as significant variables affecting temporal and spatial variations by non-parametric tests.Factor analysis identified that the major pollutants in the HP region were organic matters and nutrients during NF,heavy metals during LF,and petroleum during HF.In the MP region,the identified pollutants primarily included organic matter and heavy metals year-around,while in the LP region,organic pollution was significant during both NF and HF,and nutrient and heavy metal levels were high during both LF and HF.The main sources of pollution came from domestic wastewater and agricultural activities and runoff;however,they contributed differently to each region in regards to pollution levels.For the HP region,inputs from wastewater treatment plants were significant;but for MP and LP regions,water pollution was more likely from the combined effects of agriculture,domestic wastewater,and chemical industry.These results provide fundamental information for developing better water pollution control strategies for the Three Gorges area. 展开更多
关键词 water quality spatial variations seasonal variations multivariate statistical techniques the Three Gorges
原文传递
GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms 被引量:18
19
作者 Alireza ARABAMERI Biswajeet PRADHAN +2 位作者 Khalil REZAE Masoud SOHRABI Zahra KALANTARI 《Journal of Mountain Science》 SCIE CSCD 2019年第3期595-618,共24页
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar re... In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping. 展开更多
关键词 LANDSLIDE susceptibility GIS Remote sensing BIVARIATE MODEL multivariate MODEL Machine learning MODEL
原文传递
Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry 被引量:39
20
作者 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期191-203,共13页
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ... Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made. 展开更多
关键词 multivariate statistical process monitoring and control (MSPM&C) fault detection and isolation (FDI) principal component analysis (PCA) partial least squares (PLS) quality control inferential model
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部