期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
The spatial multiscale variability of heavy metals based on factorial kriging analysis: A case study in the northeastern Beibu Gulf 被引量:5
1
作者 ZHAO Jianru CHU Fengyou +4 位作者 JIN Xianglong WU Qingsong YANG Kehong GE Qian JIN Lu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第12期137-146,共10页
Factorial kriging analysis is applied to the research on the spatial multiscale variability of heavy metals in submarine. It is used to analyze the multiscale spatial structures of seven heavy metals, Ni, Cu, Zn, Pb, ... Factorial kriging analysis is applied to the research on the spatial multiscale variability of heavy metals in submarine. It is used to analyze the multiscale spatial structures of seven heavy metals, Ni, Cu, Zn, Pb, Cr, As and Cd in the surface sediment from the northeastern of Beibu Gulf, identify and separate spatial variations at different scales of heavy metals, and discuss the provenance of heavy metals and the influencing factors. The results show that the existence of three-scale spatial variations those consist of nugget effect, a spherical structure with range of 30 km(short-range scale) and a spherical structure with range of 140 km(long-range scale) in the linear model of coregionalization fitted. The spatial distribution features of seven heavy metals at short-range scale reflect "spot-like" or "stripe-like" local-scale spatial variations; the spatial distribution features of the seven heavy metals at long-range scale represent "slice-like" regional-scale spatial variations. At local scale, Zn, Cr, Ni,Cu, Pb and Cd are derived primarily from parent materials of Hainan Island, Leizhou Peninsula and Guangxi land, whose spatial distribution characteristics are controlled by granularity of sediments, while As is influenced dominantly by human pollution components from Hainan Island and Leizhou Peninsula. At regional scale, Zn,Cr, Ni and Cu originate primarily from parent rock materials of Leizhou Peninsula and Hainan Island, secondly from Guangxi land; As originated primarily from parent rock materials from Hainan Island, secondly from Leizhou Peninsula and Guangxi land. These metals are transported and migrated with sediments dominated by the anticlockwise circulation of Beibu Gulf year-round, deposited in "convergence center", forming the whole sedimentary pattern in direction of NWW-NNW at regional scale. The difference in distribution type between As and other metals at regional scale is mainly due to their different geochemical behavior. 展开更多
关键词 spatial multiscale variability heavy metals factorial kriging analysis sediments northeastern Beibu Gulf
在线阅读 下载PDF
The 2022 Extreme Heatwave in Shanghai,Lower Reaches of the Yangtze River Valley:Combined Influences of Multiscale Variabilities 被引量:7
2
作者 Ping LIANG Zhiqi ZHANG +2 位作者 Yihui DING Zeng-Zhen HU Qi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期593-607,共15页
In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th... In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales. 展开更多
关键词 extreme heatwave multiscale variability air-sea interaction warming trend Yangtze River Valley SHANGHAI
在线阅读 下载PDF
Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008 被引量:8
3
作者 LIU Feng CHEN Shenliang PENG Jun CHEN Guangquan 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期1047-1061,共15页
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and the... Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), inter-annual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sediment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976. 展开更多
关键词 Yellow River water discharge and sediment load wavelet analysis multiscale variability estuarineevolution
原文传递
Tropical cyclones and multiscale climate variability: The active western North Pacific typhoon season of 2018 被引量:3
4
作者 Liang WU Hongjie ZHANG +1 位作者 Tao FENG Yulian TANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第1期1-11,共11页
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season ove... The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018. 展开更多
关键词 Tropical cyclone multiscale climate variability Typhoon season of 2018 Western North Pacific
原文传递
Patterns of Multiscale Temperature Variability over the Eastern and Central Tibetan Plateau During 1960-2008 被引量:1
5
作者 宋辞 裴韬 +1 位作者 周成虎 何亚文 《Acta meteorologica Sinica》 SCIE 2013年第4期521-540,共20页
Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and ce... Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and central Tibetan Plateau (TP) during 1960-2008, we find decreasing trends in daily and intraannual temperature, especially in cold seasons (autumn and winter). These changes are more sensitive than those in the eastern China coastal region at the same latitude and indicate an asymmetric change of temperature, with hourly, daily, and monthly trends in cold periods stronger than those in warm periods during the recent years. The variation of interannual temperature is complex, showing an increasing trend in autumn and winter and decreasing trend in spring and summer, which is similar to those in the northern polar region. The changes of multiscale variability of temperature are mainly related to changes of atmospheric water vapor, cloudiness, anthropogenic aerosols, monsoon-driven climate, and some local factors. To find the influences of local conditions on temperature variability, we analyze the effects of altitude, topography, and urbanization. The results show that elevation is strongly and positively related to diurnal temperature range (DTR) and slightly positively related to interannual temperature variability (IVT), but intraannual temperature variability shows no clear elevation dependency. Topography and urbanization also play important roles in multiscale temperature variability. Finally, strong relationships are observed between temperature variability on each scale and different extreme indices. 展开更多
关键词 multiscale temperature variability Tibetan Plateau altitude effect topography effect
在线阅读 下载PDF
The East Asian Subtropical Summer Monsoon:Recent Progress 被引量:9
6
作者 何金海 刘伯奇 《Journal of Meteorological Research》 SCIE CSCD 2016年第2期135-155,共21页
The East Asian subtropical summer monsoon(EASSM) is one component of the East Asian summer monsoon system,and its evolution determines the weather and climate over East China.In the present paper,we firstly demonstr... The East Asian subtropical summer monsoon(EASSM) is one component of the East Asian summer monsoon system,and its evolution determines the weather and climate over East China.In the present paper,we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55(Japanese 55-yr Reanalysis) data and CMAP(CPC Merged Analysis of Precipitation),GPCP(Global Precipitation Climatology Project),and TRMM(Tropical Rainfall Measuring Mission) precipitation data.The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April,with the establishment of strong southerly wind in situ.The EASSM rainfall,which is composed of dominant convective and minor stratiform precipitation,is always accompanied by a frontal system and separated from the tropical summer monsoon system.It moves northward following the onset of the South China Sea summer monsoon.Moreover,the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated,including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes.In addition,we reveal a possible reason for the subtropical climate difference between East Asia and East America.Finally,the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal,interannual,and interdecadal variability of the EASSM and their importance in climate prediction. 展开更多
关键词 East Asian subtropical summer monsoon rainbelt formation and advancement precipitation property zonal land-sea thermal contrast seasonal transition midlatitude influence multiscale variability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部