期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling of Earth’s Gravity Fields Visualization Based on Quad Tree 被引量:2
1
作者 LUO Zhicai LI Zhenhai ZHONG Bo 《Geo-Spatial Information Science》 2010年第3期216-220,共5页
The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the pape... The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First, this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields. 展开更多
关键词 LOD Quad Tree earth’s gravity fields multiresolution rendering
原文传递
MCGIM-Based Model Streaming for Realtime Progressive Rendering
2
作者 盛斌 孟维亮 +1 位作者 孙汉秋 吴恩华 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期166-175,共10页
While most mesh streaming techniques focus on optimizing the transmission order of the polygon data, few approaches have addressed the streaming problems by using geometry images (GIM). In this paper, we present a n... While most mesh streaming techniques focus on optimizing the transmission order of the polygon data, few approaches have addressed the streaming problems by using geometry images (GIM). In this paper, we present a new approach which firstly partitions a mesh into several surface patches, then converts these patches into multi-chart geometry images (MCGIM). After resampling the MCGIM and normal map atlas are obtained, we hierarchically construct the regular geometry image representation by adopting the quadtree structure. In this way, the encoded nodes can be transmitted in arbitrary order with high transmission flexibility. Also, the rendering quality of the partially transmitted models can be greatly improved by using the normal texture atlas. Meanwhile only the geometry on the silhouette to the current viewpoint are required to be refined and transmitted, therefore the amount of data is minimized for transferring each frame. In particular, our approach also allows users to encode and transmit the mesh data via JPEG2000 technique. Therefore, our mesh streaming method is suitable for transmitting 3D animation models with use of Motion JPEG2000 videos. Experimental results have demonstrated the effectiveness of our approach, which enables one server to stream the MCGIM texture atlas to the clients. Also, the transmitted model can be rendered in a multiresolution manner by GPU acceleration on the client side, due to the regular geometry structure of MCGIM. 展开更多
关键词 mesh streaming geometry images JPEG2000 multiresolution rendering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部