In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is...In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.展开更多
The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics h...The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.展开更多
基金This paper was supported by the Mexican Consejo Nacional de Ciencia y Tecnologia(CONACyT)for the postgraduate studies at University of Essex.
文摘In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.
基金supported by the National Natural Science Foundation of China Key Project under Grant No.70933003the National Natural Science Foundation of China under Grant Nos.70871109 and 71203247
文摘The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.