Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation...Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II)and Mn(II)by Pseudomonas taiwanensis(marked as P4)and Pseudomonas plecoglossicida(marked as G1)contains rich reactive oxygen functional groups,which play critical roles in the removal efficiency and immobilization of heavymetal(loid)s in co-contamination system.The isolated strains P4 and G1 can growwell in the following environments:pH 5-9,NaCl 0-4%,and temperature 20-30℃.The removal efficiencies of Fe,Pb,As,Zn,Cd,Cu,and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system(the initial concentrations of heavy metal(loid)were 1 mg/L),approximately reaching 96%,92%,85%,67%,70%,54%and 15%,respectively.The exchangeable and carbonate bound As,Cd,Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil,thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s.This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.展开更多
The design and preparation of economic and efficient electrolysis water catalysts is an important part in effectively developing and utilizing hydrogen energy.In this work,novel N-doped carbon nanospheres supported mu...The design and preparation of economic and efficient electrolysis water catalysts is an important part in effectively developing and utilizing hydrogen energy.In this work,novel N-doped carbon nanospheres supported multiple transition metal sulfides(NiWCoS/NC)electrocatalysts were prepared by combining the radiation oxidation synthesis and synchronous carbonization-sulfurization.Initially,the precursor material(NiWCoS/OANI,here OANI refers to oligoaniline)containing sulfurand multiple transition metal(Ni,W,and Co)ions loaded on oligoaniline nanospheres was directly one-pot synthesized at room temperature under γ-ray radiation.Subsequently,NiWCoS/NC electrocatalysts were successfully prepared by calcining the NiWCoS/OANI precursor at 800℃.The electrocatalytic performance of NiWCoS/NC for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)was characterized by electrochemical analysis methods including linear sweep voltammetry,cyclic voltammetry,chronoamperometry,and electrochemical impedance spectroscopy.The influence of the relative content of the loaded transition metals on the electrocatalytic performance was also investigated.The results indicate that the novel NiWCoS/NC electrocatalyst can significantly reduce the overpotential and Tafel slope for both HER and OER compared to corresponding electrocatalysts with single metal or metal sulfide component.When NiWCoS/NC with a molar ratio of 3:6:10 for W,Co,and S elements was used as electrode material,the overpotentials for HER in 0.5 mol/L H_(2)SO_(4) and OER in 1 mol/L KOH are only 161 mV and 243 mV at a current density of 10 mA/cm^(2),respectively.The Tafel slopes are 74 mV/dec and 88 mV/dec,respectively.The work provides a new direction and method for the design and green facile preparation of high-efficiency overall water splitting catalysts.展开更多
Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as lumi...Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries.展开更多
Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and re...Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.展开更多
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
The vibrational resolved spectra of MO_(2)^(-)/MO_(2)(M=Ti,Zr,and Hf)are reported by using photoelectron imaging and theoretical calculations.The results indicate that all the ground states of anionic and neutral MO_(...The vibrational resolved spectra of MO_(2)^(-)/MO_(2)(M=Ti,Zr,and Hf)are reported by using photoelectron imaging and theoretical calculations.The results indicate that all the ground states of anionic and neutral MO_(2)(M=Ti,Zr,and Hf)compounds are formed in bent insertion structures.The observed ground-state adiabatic detachment energy(ADE)is measured to be 1.597±0.003,1.651±0.003,and 2.119±0.003 eV for TiO_(2)^(-),ZrO_(2)^(-),and HfO_(2)^(-),respectively.The vibrational frequencies of the anionic and neutral MO_(2)are also determined from the experimental spectra.The results of theoretical calculations show that the electronic configurations of MO_(2)^(-)are^(2)A_(1)with C_(2v)point group.Bond order analysis indicates that the two M-O bonds are all multiple characters.展开更多
Metal oxide catalysts are widely employed in propane dehydrogenation(PDH)for propylene synthesis,requiring sequential reduction-reaction-regeneration cycles.However,the eff ect of water present in the inlet gas or rea...Metal oxide catalysts are widely employed in propane dehydrogenation(PDH)for propylene synthesis,requiring sequential reduction-reaction-regeneration cycles.However,the eff ect of water present in the inlet gas or reactor on the catalytic per-formance of various metal oxides remains insuffi ciently understood.This study examines the infl uence of water on supported metal oxide catalysts,specifi cally CoO x/Al_(2)O_(3),VO x/Al_(2)O_(3),and an industrial analog CrO x/Al_(2)O_(3) catalyst.By combining titration experiments,in situ Fourier transform infrared spectroscopy,kinetic analysis,and isotopic techniques,we demon-strate that even trace amounts of water can markedly suppress PDH performance via dissociative adsorption on the oxide surface.Methanol pretreatment eff ectively scavenges adsorbed water,recovering Lewis acid-base sites and consequently restoring PDH activity.This work underscores the profound inhibitory role of trace water in PDH over metal oxide catalysts and illustrates the potential of methanol pretreatment as an effective strategy to mitigate this limitation.展开更多
Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Desi...Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.展开更多
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,...Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.展开更多
The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping...The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.展开更多
The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performa...The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.展开更多
Vitamin D deficiency(VDD)represents a significant nutritional concern among children and adolescents.The estimated prevalence of VDD in China is 46.8%in this population^([1]).VDD during childhood and adolescence has b...Vitamin D deficiency(VDD)represents a significant nutritional concern among children and adolescents.The estimated prevalence of VDD in China is 46.8%in this population^([1]).VDD during childhood and adolescence has been associated with the onset of various conditions,including acute respiratory infections,asthma,atopic dermatitis,and food allergies^([2]).Multiple factors,including age,sun exposure,adiposity,and genetics,influence vitamin D levels^([2,3]).Increasing attention has been directed toward understanding the environmental determinants that may influence vitamin D status.Given the potential of metallic pollutants to disrupt endocrine function and their ubiquity in the environment,investigating the effects of metal exposure on human vitamin D status,particularly in vulnerable populations,is imperative.展开更多
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a...Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.展开更多
Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts wer...Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.展开更多
Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and χK-20Mn-Ce-Zr...Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and χK-20Mn-Ce-Zr (χ= 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere indicate that K-Ce-Zr has the highest catalytic activity for soot oxidation under loose contact condition, due to enhancement of the soot and catalyst contacts. On the other hand, under a tight contact condition, Mn-Ce-Zr and Cu-Ce-Zr nano-composites have high activities for soot oxidation and lower the soot TPO peak temperatures by about 280 and 270℃, respectively, as compared to non-catalytic soot oxidation. Furthermore, the addition of up to 10 wt.% potassium oxides into Mn-Ce-Zr increases its catalytic activity and further reduces the soot TPO peak temperature by about 40℃ under loose contact condition.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a...Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal-organic frameworks(MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.展开更多
Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous cataly...Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous catalysis is an effective pathway for the removal of these pollutants,and the critical issue is the development of novel and high-performance catalysts.In this review,we briefly summarize the preparation methods,physicochemical properties,catalytic activities,and related reaction mechanisms for the above pollutants removal of the rare earth oxides,mixed rare earth oxide,rare earth oxidesupported noble metal,and mixed rare earth oxide-supported noble metal catalysts that have been investigated by our group and other researchers.It was found that catalytic performance was associated with the factors,such as specific surface area,pore structure,particle size and dispersion,adsorbed oxygen species concentration,reducibility,reactant activation ability or interaction between metal nanoparticles and support.Furthermore,we also envision the development trend of such a topic in future work.展开更多
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo...g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.展开更多
基金supported d by the National Key Research and Development Program of China(No.2018YFC1802905).
文摘Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II)and Mn(II)by Pseudomonas taiwanensis(marked as P4)and Pseudomonas plecoglossicida(marked as G1)contains rich reactive oxygen functional groups,which play critical roles in the removal efficiency and immobilization of heavymetal(loid)s in co-contamination system.The isolated strains P4 and G1 can growwell in the following environments:pH 5-9,NaCl 0-4%,and temperature 20-30℃.The removal efficiencies of Fe,Pb,As,Zn,Cd,Cu,and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system(the initial concentrations of heavy metal(loid)were 1 mg/L),approximately reaching 96%,92%,85%,67%,70%,54%and 15%,respectively.The exchangeable and carbonate bound As,Cd,Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil,thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s.This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.
基金supported by the National Natural Science Foundation of China (No.51973205 and No.51773189)the Fundamental Research Funds for the Central Universities (WK3450000005 and WK3450000006)。
文摘The design and preparation of economic and efficient electrolysis water catalysts is an important part in effectively developing and utilizing hydrogen energy.In this work,novel N-doped carbon nanospheres supported multiple transition metal sulfides(NiWCoS/NC)electrocatalysts were prepared by combining the radiation oxidation synthesis and synchronous carbonization-sulfurization.Initially,the precursor material(NiWCoS/OANI,here OANI refers to oligoaniline)containing sulfurand multiple transition metal(Ni,W,and Co)ions loaded on oligoaniline nanospheres was directly one-pot synthesized at room temperature under γ-ray radiation.Subsequently,NiWCoS/NC electrocatalysts were successfully prepared by calcining the NiWCoS/OANI precursor at 800℃.The electrocatalytic performance of NiWCoS/NC for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)was characterized by electrochemical analysis methods including linear sweep voltammetry,cyclic voltammetry,chronoamperometry,and electrochemical impedance spectroscopy.The influence of the relative content of the loaded transition metals on the electrocatalytic performance was also investigated.The results indicate that the novel NiWCoS/NC electrocatalyst can significantly reduce the overpotential and Tafel slope for both HER and OER compared to corresponding electrocatalysts with single metal or metal sulfide component.When NiWCoS/NC with a molar ratio of 3:6:10 for W,Co,and S elements was used as electrode material,the overpotentials for HER in 0.5 mol/L H_(2)SO_(4) and OER in 1 mol/L KOH are only 161 mV and 243 mV at a current density of 10 mA/cm^(2),respectively.The Tafel slopes are 74 mV/dec and 88 mV/dec,respectively.The work provides a new direction and method for the design and green facile preparation of high-efficiency overall water splitting catalysts.
基金supported by the National Key Research and Development Program of China(No.2023YFC3708005)The Fundamental Research Funds for the Central Universities,Nankai University(No.63241208)supported by the National Natural Science Foundation of China(Nos.21872102 and 22172080)。
文摘Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries.
基金supported by National Natural Science Fundation of China(Nos.52170086,22308194,U22A20423)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Taishan Scholars Program of Shandong Province(No.tsqn202211012)Shandong Provincial Excellent Youth(No.ZR2022YQ47)。
文摘Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
基金supported by the National Natural Science Foundation of China(No.22273065)Shandong Energy institute(SEI U202312)"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA02020000).
文摘The vibrational resolved spectra of MO_(2)^(-)/MO_(2)(M=Ti,Zr,and Hf)are reported by using photoelectron imaging and theoretical calculations.The results indicate that all the ground states of anionic and neutral MO_(2)(M=Ti,Zr,and Hf)compounds are formed in bent insertion structures.The observed ground-state adiabatic detachment energy(ADE)is measured to be 1.597±0.003,1.651±0.003,and 2.119±0.003 eV for TiO_(2)^(-),ZrO_(2)^(-),and HfO_(2)^(-),respectively.The vibrational frequencies of the anionic and neutral MO_(2)are also determined from the experimental spectra.The results of theoretical calculations show that the electronic configurations of MO_(2)^(-)are^(2)A_(1)with C_(2v)point group.Bond order analysis indicates that the two M-O bonds are all multiple characters.
基金supported by the National Key R&D Program of China(No.2023YFA1507800)the National Science Foundation of China(Nos.22121004,22122808,22478279,and 22108201)+1 种基金the Haihe Laboratory of Sustainable Chemical Trans-formations,the Program of Introducing Talents of Discipline to Uni-versities(No.BP0618007)the XPLORER PRIZE.
文摘Metal oxide catalysts are widely employed in propane dehydrogenation(PDH)for propylene synthesis,requiring sequential reduction-reaction-regeneration cycles.However,the eff ect of water present in the inlet gas or reactor on the catalytic per-formance of various metal oxides remains insuffi ciently understood.This study examines the infl uence of water on supported metal oxide catalysts,specifi cally CoO x/Al_(2)O_(3),VO x/Al_(2)O_(3),and an industrial analog CrO x/Al_(2)O_(3) catalyst.By combining titration experiments,in situ Fourier transform infrared spectroscopy,kinetic analysis,and isotopic techniques,we demon-strate that even trace amounts of water can markedly suppress PDH performance via dissociative adsorption on the oxide surface.Methanol pretreatment eff ectively scavenges adsorbed water,recovering Lewis acid-base sites and consequently restoring PDH activity.This work underscores the profound inhibitory role of trace water in PDH over metal oxide catalysts and illustrates the potential of methanol pretreatment as an effective strategy to mitigate this limitation.
基金supported by the National Natural Science Foundation of China(No.52171174).The authors acknowledge Dr.Chao Zhang from the Instrumentation Service Center for Physical Sciences at Westlake University for magnetization measurements.
文摘Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.
文摘Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.
基金supported by the National Natural Science Foundation of China(52276204 and U22A20435)。
文摘The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.
基金supported by the National Natural ScienceFoundation of China(Grant No.52203332)。
文摘The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.
基金supported by grants from the National Natural Science Foundation of China(G.F.Wang,grant number 82204071)(P.Y.Su,grant numbers 81874268 and 82473655)the Research Funds of the Center for Big Data and Population Health of IHM(P.Y.Su,No.JKS2023016)Anhui Provincial Health Commission Scientific Research Project(Y.Zhou,No.AHWJ2023A30027)。
文摘Vitamin D deficiency(VDD)represents a significant nutritional concern among children and adolescents.The estimated prevalence of VDD in China is 46.8%in this population^([1]).VDD during childhood and adolescence has been associated with the onset of various conditions,including acute respiratory infections,asthma,atopic dermatitis,and food allergies^([2]).Multiple factors,including age,sun exposure,adiposity,and genetics,influence vitamin D levels^([2,3]).Increasing attention has been directed toward understanding the environmental determinants that may influence vitamin D status.Given the potential of metallic pollutants to disrupt endocrine function and their ubiquity in the environment,investigating the effects of metal exposure on human vitamin D status,particularly in vulnerable populations,is imperative.
基金supported by the National Natural Science Foundation of China (No. 52374292)China Baowu Low Carbon Metallurgy Innovation Foundation, China (No. BWLCF202309)the Natural Science Foundation of Changsha City, China (No. KQ2208271)。
文摘Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.
基金supported by the National Natural Science Foundation of China(51422605)the Provincial Natural Science Foundation of Zhejiang,China(LR16E060001)~~
文摘Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.
文摘Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and χK-20Mn-Ce-Zr (χ= 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere indicate that K-Ce-Zr has the highest catalytic activity for soot oxidation under loose contact condition, due to enhancement of the soot and catalyst contacts. On the other hand, under a tight contact condition, Mn-Ce-Zr and Cu-Ce-Zr nano-composites have high activities for soot oxidation and lower the soot TPO peak temperatures by about 280 and 270℃, respectively, as compared to non-catalytic soot oxidation. Furthermore, the addition of up to 10 wt.% potassium oxides into Mn-Ce-Zr increases its catalytic activity and further reduces the soot TPO peak temperature by about 40℃ under loose contact condition.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2015R1A4A1041036 and NRF-2018R1C1B6006076)。
文摘Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal-organic frameworks(MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.
基金Project supported by National Natural Science Foundation of China(21677004,21876006,21622701)National Natural Science Committee of China-Liaoning Provincial People’s Government Joint Fund(U1908204)Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)。
文摘Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous catalysis is an effective pathway for the removal of these pollutants,and the critical issue is the development of novel and high-performance catalysts.In this review,we briefly summarize the preparation methods,physicochemical properties,catalytic activities,and related reaction mechanisms for the above pollutants removal of the rare earth oxides,mixed rare earth oxide,rare earth oxidesupported noble metal,and mixed rare earth oxide-supported noble metal catalysts that have been investigated by our group and other researchers.It was found that catalytic performance was associated with the factors,such as specific surface area,pore structure,particle size and dispersion,adsorbed oxygen species concentration,reducibility,reactant activation ability or interaction between metal nanoparticles and support.Furthermore,we also envision the development trend of such a topic in future work.
基金financially supported by the National Natural Science Foundation (No.52072347, 51972288, 51672258 and 51572246)the Fundamental Research Funds for the Central Universities (No. 2652019144 and 2652018287)+1 种基金the financial supports from the Science and Technology Program of Guangdong Province (2019A050510012)Shenzhen Science, Technology and Innovation Commission (SGDX2019081623240364).
文摘g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.