We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analyti...We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.展开更多
In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructi...In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.展开更多
Based on the analysis of multiple tropical cyclone(MTC)events in the South China Sea and Northwest Pacific Ocean during 1979-2019,this study classfies periods of the tropical cyclone(TC)events into active,normal,and i...Based on the analysis of multiple tropical cyclone(MTC)events in the South China Sea and Northwest Pacific Ocean during 1979-2019,this study classfies periods of the tropical cyclone(TC)events into active,normal,and inactive phases.To analyze the spatial distribution of associated anomalous variables and indices,an anomaly-based variable model is employed.Anomalies of 850 hPa vorticity,850 hPa water vapor flux divergence,and 400 hPa vertical velocity are selected as optimal predictors with physical significance.From these predictors,a physical model for the original MTC development is established.The results show that during the period of MTC development,a stable warm-core anomaly persists at 300 hPa,with a“warm tongue”extending downward as far as 700 hPa.The upper-level high-pressure anomaly center does not completely overlap with the low-pressure anomaly center at lower levels until TC genesis approaches.In addition,the 500-1000 hPa water vapor flux initially exhibits a negative anomaly,which facilitates water vapor to accumulate.A negative vertical velocity anomaly then develops,promoting the upward motion that gradually stabilizes and expands to a wider range.Ultimately,these processes lead to the formation of a positive vorticity anomaly,signifying a TC’s formation.Among the three key factors,the water vapor flux divergence anomaly serves as the primary indicator for extended-range monitoring and forecasting of MTC events.It accounts for the highest proportion of TCs,with its anomaly values most frequently exceeding the critical thresholds at TC genesis locations.Meanwhile,the water vapor flux divergence anomaly also provides the earliest anomalous signal and demonstrates the most sustained and stable indicative effect.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
In this paper,we study the elliptic system{-Δu+V(x)u=|v|^(p-2)v-λ_(2)|v|^(s2-2)v,-Δu+V(x)v=|u|^(p-2)u-λ_(1)|u|^(s1-2)u,u,v∈H^(1)(R^(N))with strongly indefinite structure and sign-changing nonlinearity.We overcome...In this paper,we study the elliptic system{-Δu+V(x)u=|v|^(p-2)v-λ_(2)|v|^(s2-2)v,-Δu+V(x)v=|u|^(p-2)u-λ_(1)|u|^(s1-2)u,u,v∈H^(1)(R^(N))with strongly indefinite structure and sign-changing nonlinearity.We overcome the absence of the upper semi-continuity assumption which is crucial in traditional variational methods for strongly indefinite problems.By some new tools and techniques we proved the existence of infinitely many geometrically distinct solutions if parametersλ_(1),λ_(2)>0 small enough.To the best of our knowledge,our result seems to be the first result about infinitely many solutions for Hamiltonian system involving sign-changing nonlinearity.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of...This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.展开更多
Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure...Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.展开更多
In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomts...In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.展开更多
To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for...To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for multi-failure mode sensitivity analysis for reliability. The mathematical model of AMRSM was established and the basic principle of multi-failure mode sensitivity analysis for reliability with AMRSM was given. The important parameters of turbine blisk failures are obtained by the multi-failure mode sensitivity analysis of turbine blisk. Through the reliability sensitivity analyses of multiple failure modes (deformation, stress and strain) with the proposed method considering fluid-thermal-solid interaction, it is shown that the comprehensive reliability of turbine blisk is 0.9931 when the allowable deformation, stress and strain are 3.7 x 10(-3) m, 1.0023 x 10(9) Pa and 1.05 x 10(-2) m/m, respectively; the main impact factors of turbine blisk failure are gas velocity, gas temperature and rotational speed. As demonstrated in the comparison of methods (Monte Carlo (MC) method, traditional response surface method (RSM), multiple response surface method (MRSM) and AMRSM), the proposed AMRSM improves computational efficiency with acceptable computational accuracy. The efforts of this study provide the AMRSM with high precision and efficiency for multi-failure mode reliability analysis, and offer a useful insight for the reliability optimization design of multi-failure mode structure. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high...The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.展开更多
In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple...In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.展开更多
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot...The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.展开更多
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr...In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.展开更多
Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppre...Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidi...The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.展开更多
This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularl...This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.展开更多
Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared ...Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.展开更多
A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic c...A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations (LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution. The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh.展开更多
文摘We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.
文摘In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.
基金Guidance Project for Industrial Technology Develop-ment and Application Plan of Fujian Province(2024Y0075)Natural Science Foundation of Fujian Province(2022J01441,2024J011139,2022J011077)+3 种基金Innovation and development Project of the China Meteorological Administration(CXFZ2024J024)National Natural Science Foundation of China(42205048)Science Foundation of the Fujian Meteorological Bureau(2023Q04)Meteorological Services Research Project of the China Meteorological Administration(JCZX202409)。
文摘Based on the analysis of multiple tropical cyclone(MTC)events in the South China Sea and Northwest Pacific Ocean during 1979-2019,this study classfies periods of the tropical cyclone(TC)events into active,normal,and inactive phases.To analyze the spatial distribution of associated anomalous variables and indices,an anomaly-based variable model is employed.Anomalies of 850 hPa vorticity,850 hPa water vapor flux divergence,and 400 hPa vertical velocity are selected as optimal predictors with physical significance.From these predictors,a physical model for the original MTC development is established.The results show that during the period of MTC development,a stable warm-core anomaly persists at 300 hPa,with a“warm tongue”extending downward as far as 700 hPa.The upper-level high-pressure anomaly center does not completely overlap with the low-pressure anomaly center at lower levels until TC genesis approaches.In addition,the 500-1000 hPa water vapor flux initially exhibits a negative anomaly,which facilitates water vapor to accumulate.A negative vertical velocity anomaly then develops,promoting the upward motion that gradually stabilizes and expands to a wider range.Ultimately,these processes lead to the formation of a positive vorticity anomaly,signifying a TC’s formation.Among the three key factors,the water vapor flux divergence anomaly serves as the primary indicator for extended-range monitoring and forecasting of MTC events.It accounts for the highest proportion of TCs,with its anomaly values most frequently exceeding the critical thresholds at TC genesis locations.Meanwhile,the water vapor flux divergence anomaly also provides the earliest anomalous signal and demonstrates the most sustained and stable indicative effect.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金supported by the NSFC(11301297)the Hubei Provincial Natural Science Foundation of China(2024AFB730)+3 种基金the Yichang City Natural Science Foundation(A-24-3-008)the Open Research Fund of Key Laboratory of Nonlinear Analysis and Applications(Central China Normal University),Ministry of Education,P.R.China(NAA2024ORG003)Gu's research was supported by the Zhejiang Provincial Natural Science Foundation(LQ21A010014)the NFSC(12101577).
文摘In this paper,we study the elliptic system{-Δu+V(x)u=|v|^(p-2)v-λ_(2)|v|^(s2-2)v,-Δu+V(x)v=|u|^(p-2)u-λ_(1)|u|^(s1-2)u,u,v∈H^(1)(R^(N))with strongly indefinite structure and sign-changing nonlinearity.We overcome the absence of the upper semi-continuity assumption which is crucial in traditional variational methods for strongly indefinite problems.By some new tools and techniques we proved the existence of infinitely many geometrically distinct solutions if parametersλ_(1),λ_(2)>0 small enough.To the best of our knowledge,our result seems to be the first result about infinitely many solutions for Hamiltonian system involving sign-changing nonlinearity.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(44-PRFA-P-107).
文摘This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.
基金National Natural Science Foundation of China (10572117,10802063,50875213)Aeronautical Science Foundation of China (2007ZA53012)+1 种基金New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868)National High-tech Research and Development Program (2007AA04Z401)
文摘Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.
文摘In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.
基金co-supported by the National Natural Science Foundation of China (No. 51275138)the Science Foundation of Heilongjiang Provincial Department of Education (No. 12531109)+1 种基金the funding of Hong Kong Scholars Programs (Nos. XJ2015002 and G-YZ90)China’s Postdoctoral Science Funding (No. 2015M580037)
文摘To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for multi-failure mode sensitivity analysis for reliability. The mathematical model of AMRSM was established and the basic principle of multi-failure mode sensitivity analysis for reliability with AMRSM was given. The important parameters of turbine blisk failures are obtained by the multi-failure mode sensitivity analysis of turbine blisk. Through the reliability sensitivity analyses of multiple failure modes (deformation, stress and strain) with the proposed method considering fluid-thermal-solid interaction, it is shown that the comprehensive reliability of turbine blisk is 0.9931 when the allowable deformation, stress and strain are 3.7 x 10(-3) m, 1.0023 x 10(9) Pa and 1.05 x 10(-2) m/m, respectively; the main impact factors of turbine blisk failure are gas velocity, gas temperature and rotational speed. As demonstrated in the comparison of methods (Monte Carlo (MC) method, traditional response surface method (RSM), multiple response surface method (MRSM) and AMRSM), the proposed AMRSM improves computational efficiency with acceptable computational accuracy. The efforts of this study provide the AMRSM with high precision and efficiency for multi-failure mode reliability analysis, and offer a useful insight for the reliability optimization design of multi-failure mode structure. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金supported by the National Key R&D Program of China (Grant No.2018YFC0407002)the National Natural Science Foundation of China(Grant Nos.11502033 and 51879014)
文摘The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.
基金supported by the National Natural Science Foundation of China (10571053, 10871066, 10811120282)Programme for New Century Excellent Talents in University(NCET-06-0712)
文摘In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.
基金Project supported by the National Natural Science Foundation of China (Grant No.10472060)
文摘The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.
基金supported by the National Natural Science Foundation of China (Grants 11471262, 50976003, 51136005)
文摘In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.
文摘Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金The research of this author was supported by the National Natural Science Foundation of China,the JiangsuProvince Natural Science Foundation,the Jiangsu Province"333Engineering" Foundation and the Jiangsu Province"Qinglan Engineering" Foundation
文摘The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.
文摘This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.
基金supported by NSFC (11071039,11161130002)Natural Science Foundation of Jiangsu Province (BK2011584)
文摘Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.
文摘A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations (LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution. The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh.