Aqueous Ni-Zn microbatteries are safe,reliable and inexpensive but notoriously suffer from inadequate energy and power densities.Herein,we present a novel mechanism of superoxide-activated Ni substrate that realizes t...Aqueous Ni-Zn microbatteries are safe,reliable and inexpensive but notoriously suffer from inadequate energy and power densities.Herein,we present a novel mechanism of superoxide-activated Ni substrate that realizes the redox reaction featuring three-electron transfers(Ni↔Ni3+).The superoxide activates the direct redox reaction between Ni substrate and KNiO_(2)by lowering the reaction Gibbs free energy,supported by in-situ Raman and density functional theory simulations.The prepared chronopotentiostatic superoxidation-activated Ni(CPS-Ni)electrodes exhibit an ultrahigh capacity of 3.21 mAh cm^(-2)at the current density of 5 mA cm^(-2),nearly 8 times that of traditional one-electron processes electrodes.Even under the ultrahigh 200 mA cm^(-2)current density,the CPS-Ni electrodes show 86.4%capacity retention with a Columbic efficiency of 99.2%after 10,000 cycles.The CPS-Ni||Zn microbattery achieves an exceptional energy density of 6.88 mWh cm^(-2)and power density of 339.56 mW cm^(-2).Device demonstration shows that the power source can continuously operate for more than 7 days in powering the sensing and computation intensive practical application of photoplethysmographic waveform monitoring.This work paves the way to the development of multi-electron transfer mechanisms for advanced aqueous Ni-Zn batteries with high capacity and long lifetime.展开更多
基金supported by InnoHK Project at Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE)City University of Hong Kong (7006108)。
文摘Aqueous Ni-Zn microbatteries are safe,reliable and inexpensive but notoriously suffer from inadequate energy and power densities.Herein,we present a novel mechanism of superoxide-activated Ni substrate that realizes the redox reaction featuring three-electron transfers(Ni↔Ni3+).The superoxide activates the direct redox reaction between Ni substrate and KNiO_(2)by lowering the reaction Gibbs free energy,supported by in-situ Raman and density functional theory simulations.The prepared chronopotentiostatic superoxidation-activated Ni(CPS-Ni)electrodes exhibit an ultrahigh capacity of 3.21 mAh cm^(-2)at the current density of 5 mA cm^(-2),nearly 8 times that of traditional one-electron processes electrodes.Even under the ultrahigh 200 mA cm^(-2)current density,the CPS-Ni electrodes show 86.4%capacity retention with a Columbic efficiency of 99.2%after 10,000 cycles.The CPS-Ni||Zn microbattery achieves an exceptional energy density of 6.88 mWh cm^(-2)and power density of 339.56 mW cm^(-2).Device demonstration shows that the power source can continuously operate for more than 7 days in powering the sensing and computation intensive practical application of photoplethysmographic waveform monitoring.This work paves the way to the development of multi-electron transfer mechanisms for advanced aqueous Ni-Zn batteries with high capacity and long lifetime.