期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tribological properties of nanostructured Al_2O_3-40%TiO_2 multiphase ceramic particles reinforced Ni-based alloy composite coatings 被引量:9
1
作者 何龙 谭业发 +2 位作者 谭华 周春华 高立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2618-2627,共10页
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib... The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear. 展开更多
关键词 nanostructured A1203-TiO2 multiphase ceramic particles Ni-based alloy composite coating plasma spray friction wear
在线阅读 下载PDF
Flow behavior and deposition study of pollen-shape carrier particles in an idealized inhalation path model 被引量:2
2
作者 Meer Saiful Hassan Raymond Lau 《Particuology》 SCIE EI CAS CSCD 2010年第1期51-59,共9页
Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA part... Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA particles are synthesized to have comparable size as typical carrier particles with mean diameter of 30-50 μm and effective density less than 0.3 g/cm^3. The flow behaviors of HA and commonly used lactose (LA) carrier particles are characterized by the Carr's compressibility index (CI). The HA particles have lower CI than the LA particles for the same size range. The flow fields of HA and LA carrier particles are measured in an idealized inhalation path model using particle image velocimetry (PLY) technique. The particle streamlines indicate that a large portion of particles may deposit at the bending section due to inertial impaction and gravitational deposition. The flow field result shows that HA particles give smaller separation regions than the LA particles for the same size range. The pollen-shape HA particles are found to be able to follow the gas flow in the model and minimize undesired deposition. Deposition result confirms the bending section to have the most deposition. Deposition is found to be a function of particle properties. An empirical correlation is derived for the deposition efficiency of the pollen-shape particles as a function of particles Stokes number. 展开更多
关键词 Aerosol Fluid mechanics multiphase flow Particle Powder technology Pulmonary drug delivery
原文传递
Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed 被引量:15
3
作者 Wojciech P.Adamczyk Adam Klimanek +3 位作者 Ryszard A.Biaecki Gabriel Wecel Pawe Kozolub Tomasz Czakiert 《Particuology》 SCIE EI CAS CSCD 2014年第4期129-137,共9页
Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange mode... Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange model known as the dense discrete phase model (DDPM), which has common roots with the multiphase particle-in-cell model, was applied in simulating particle transport within a mid-sized experimental CFB facility. Implementation of the DDPM into the commercial ANSYS Fluent CFD package is relatively young in comparison with the granular Eulerian model. For that reason, validation of the DDPM approach against experimental data is still required and is addressed in this paper. Additional difficulties encountered in modeling fluidization processes are connected with long calculation times. To reduce times, the complete boiler models are simplified to include just the combustion chamber. Such simplifications introduce errors in the predicted solid distribution in the boiler. To investigate the conse- quences of model reduction, simulations were made using the simplified and complete pilot geometries and compared with experimental data. All simulations were performed using the ANSYSFLUENT 14.0 package. A set of user defined functions were used in the hybrid DDPM and Euler-Euler approaches to recirculate solid particles. 展开更多
关键词 Particle multiphase flow CFD Particulate processes CFB Fluidized bed
原文传递
Numerical approach for modeling particle transport phenomena in a closed loop of a circulating fluidized bed 被引量:1
4
作者 Wojciech P. Adamczyk Pawel Kozolub +4 位作者 Grzegorz Kruczek Monika Pilorz Adam Klimanek Tomasz Czakiert Gabriel Wecel 《Particuology》 SCIE EI CAS CSCD 2016年第6期69-79,共11页
Numerical modeling of a large scale circulating fiuidized bed (CFB) imposes many complexities and difficulties. Presence of a dense solid phase, a variety of spatial and time scales as well as complex model geometri... Numerical modeling of a large scale circulating fiuidized bed (CFB) imposes many complexities and difficulties. Presence of a dense solid phase, a variety of spatial and time scales as well as complex model geometries requires advanced numerical techniques. Moreover, the appropriate selection of a numerical model capable of solving granular flow, and geometrical model simplification can have a huge impact on the predicted flow field within the CFB boiler. In order to reduce the cost of the numerical simulations, the complex CFB boiler geometry is reduced to that of the combustion chamber. However, a question arises as to bow much one can simplify the geometrical model without losing accuracy of numerical simulations. To accurately predict the gas-solid and solid-solid mixing processes within subsequent sections of the CFB boiler (combustion chamber, solid separator, drain section), a complete 3D geometrical model should be used. Nevertheless, because of the presence of various spatial and temporal scales within subsequent boiler sections, the complete model of the 3D CFB boiler is practically unrealizable in numerical simulations. To resolve the aforementioned problems, this paper describes a new approach that can be applied for complete boiler modeling. The proposed approach enables complex particle transport and gas flow problems within each of the boiler sections to be accurately resolved, It has been achieved by dividing the CFB boiler geometry into several submodels, where different numerical approaches can be used to resolve gas-solid transport. The interactions between computational domains were taken into account by connecting the inlets/outlets of each section using a set of user-defined functions implemented into the solution procedure. The proposed approach ensures stable and accurate solution within the separated boiler zones. 展开更多
关键词 Fluidization CFB Numerical modeling multiphase flow Particle transport Cyclone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部