Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid ...Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid dynamics.In this study,an axisymmetric adaptive multiresolution smooth particle hydrodynamics(SPH)model is proposed to solve various strongly compressible multiphase flow problems.In the present model,the governing equations are discretized in cylindrical polar coordinates,and an improved volume adaptive scheme is developed to better solve the problem of excessive volume change in strongly compressible multiphase flows.On this basis,combined with the adaptive particle refinement technique,an adaptive multiresolution scheme is proposed in this study.In addition,the high-order differential operator and diffusion correction term are utilized to improve the accuracy and stability.The effectiveness of the model is verified by testing four typical strongly compressible multiphase flow problems.By comparing the results of adaptive multiresolution SPH with other numerical results or experimental data,we can conclude that the present SPH method effectively models strongly compressible multiphase flows.展开更多
Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronauti...Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.展开更多
Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (...Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.展开更多
The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian...The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field.The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach.The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation(LES) turbulence closure.First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure.Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region.The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture.The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa.The calculated jet penetration depth closely matches measurements.It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment.Finally, water and acetone jet injection normal to air crossflow is studied at1 atm.The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.展开更多
In this paper, a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems. Unlike previous models in the literature, the present model not only enabl...In this paper, a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems. Unlike previous models in the literature, the present model not only enables the study of multicomponent flows with different molecular weights, different viscosities and different Schmidt numbers, but also ensures that the distribution function of each component evolves on the same square lattice without invoking ad- ditional interpolations. Furthermore, the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations, and satisfies the indifferentiability principle. The numerical validation exercises further demonstrate that the favorable performance of the present model.展开更多
The incompressible two-phase flows are simulated using combination of an etching multiblock method and a diffuse interface (DI) model, particularly in the com- plex domain that can be decomposed into multiple rectan...The incompressible two-phase flows are simulated using combination of an etching multiblock method and a diffuse interface (DI) model, particularly in the com- plex domain that can be decomposed into multiple rectangular subdomains. The etching multiblock method allows natural communications between the connected subdomains and the efficient parallel computation. The DI model can consider two-phase flows with a large density ratio, and simulate the flows with the moving contact line (MCL) when a geometric formulation of the MCL model is included. Therefore, combination of the etch- ing method and the DI model has potential to deal with a variety of two-phase flows in industrial applications. The performance is examined through a series of numerical exper- iments. The convergence of the etching method is firstly tested by simulating single-phase flows past a square cylinder, and the method for the multiphase flow simulation is vali- dated by investing drops dripping from a pore. The numerical results are compared with either those from other researchers or experimental data. Good agreement is achieved. The method is also used to investigate the impact of a droplet on a grooved substrate and droplet generation in flow focusing devices.展开更多
A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen–Cahn equation(ACE).By adopting the improved form of a relaxation matrix and an ...A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen–Cahn equation(ACE).By adopting the improved form of a relaxation matrix and an equilibrium distribution function,the time derivative?t(φ)induced by recovering the diffusion term in ACE is eliminated.The conducted Chapman–Enskog analysis demonstrates that the correct conservative ACE is recovered.Four benchmark cases including Zalesak’s disk rotation,vortex droplet,droplet impact on thin film,and Rayleigh–Taylor instability are investigated to validate the proposed model.The numerical results indicate that the proposed model can accurately describe the complex interface deformation.展开更多
Direct numerical simulations (DNS) have now become a well established tool to examine complex multiphase flows. Such flows typically exhibit a large range of scales and it is generally necessary to use different des...Direct numerical simulations (DNS) have now become a well established tool to examine complex multiphase flows. Such flows typically exhibit a large range of scales and it is generally necessary to use different descriptions of the flow depending on the scale that we are examining. Here we discuss multiphase flows from a multiscale perspective. Those include both how DNS are providing insight and understanding for modeling of scales much larger than the "dominant scale" (defined where surface tension, viscous forces or inertia are important), as well as how DNS are often limited by the need to resolve processes taking place on much smaller scales. Both problems can be cast into a language introduced for general classes of multiscale problems and reveal that while the classification may be new, the issues are not.展开更多
The paper presents the implementation of non-Newtonian fluid properties for compressible multiphase solver in the open source framework OpenFOAM. The transport models for Power Law, Cross Power Law, Casson, Bird-Carre...The paper presents the implementation of non-Newtonian fluid properties for compressible multiphase solver in the open source framework OpenFOAM. The transport models for Power Law, Cross Power Law, Casson, Bird-Carreau and Herschel-Bulkley fluids were included in the thermophysical model library. Appropriate non-Newtonian liquids have been chosen from literature, and pressure driven test simulations are carried out. Therefore, the solver compressibleInterFoam is used to compute air-liquid mixture flows over a backward facing step. A validation of the novel models has been performed by means of a sample-based comparison of the strain rate viscosity relation. The theoretical rheological properties of the selected liquids agree well with the results of the simulated data.展开更多
In this paper,a new sharp-interface approach to simulate compressible multiphase flows is proposed.The new scheme consists of a high order WENO finite volume scheme for solving the Euler equations coupled with a high ...In this paper,a new sharp-interface approach to simulate compressible multiphase flows is proposed.The new scheme consists of a high order WENO finite volume scheme for solving the Euler equations coupled with a high order pathconservative discontinuous Galerkin finite element scheme to evolve an indicator function that tracks the material interface.At the interface our method applies ghost cells to compute the numerical flux,as the ghost fluid method.However,unlike the original ghost fluid scheme of Fedkiw et al.[15],the state of the ghost fluid is derived from an approximate-state Riemann solver,similar to the approach proposed in[25],but based on a much simpler formulation.Our formulation leads only to one single scalar nonlinear algebraic equation that has to be solved at the interface,instead of the system used in[25].Away from the interface,we use the new general Osher-type flux recently proposed by Dumbser and Toro[13],which is a simple but complete Riemann solver,applicable to general hyperbolic conservation laws.The time integration is performed using a fully-discrete one-step scheme,based on the approaches recently proposed in[5,7].This allows us to evolve the system also with time-accurate local time stepping.Due to the sub-cell resolution and the subsequent more restrictive time-step constraint of the DG scheme,a local evolution for the indicator function is applied,which is matched with the finite volume scheme for the solution of the Euler equations that runs with a larger time step.The use of a locally optimal time step avoids the introduction of excessive numerical diffusion in the finite volume scheme.Two different fluids have been used,namely an ideal gas and a weakly compressible fluid modeled by the Tait equation.Several tests have been computed to assess the accuracy and the performance of the new high order scheme.A verification of our algorithm has been carefully carried out using exact solutions as well as a comparison with other numerical reference solutions.The material interface is resolved sharply and accurately without spurious oscillations in the pressure field.展开更多
We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous...We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous media.The proposed method rely on four pillars:(i)dimensionless numbers as input parameters for the machine learning model,(ii)simplified numerical model(two-dimensional)for the offline training,(iii)dynamic control of a nonlinear solver tuning parameter(numerical relaxation),(iv)and online learning for time real-improvement of the machine learning model.This strategy decreases the number of nonlinear iterations by dynamically modifying a single global parameter,the relaxation factor,and by adaptively learning the attributes of each numerical model on-the-run.Furthermore,this work performs a sensitivity study in the dimensionless parameters(machine learning features),assess the efficacy of various machine learning models,demonstrate a decrease in nonlinear iterations using our method in more intricate,realistic three-dimensional models,and fully couple a machine learning model into an open-source multiphase flow simulator achieving up to 85%reduction in computational time.展开更多
A conservative modification to the ghost fluid method(GFM)is developed for compressible multiphase flows.The motivation is to eliminate or reduce the conservation error of the GFM without affecting its performance.We ...A conservative modification to the ghost fluid method(GFM)is developed for compressible multiphase flows.The motivation is to eliminate or reduce the conservation error of the GFM without affecting its performance.We track the conservative variables near the material interface and use this information to modify the numerical solution for an interfacing cell when the interface has passed the cell.The modification procedure can be used on the GFM with any base schemes.In this paper we use the fifth order finite difference WENO scheme for the spatial discretization and the third order TVD Runge-Kutta method for the time discretization.The level set method is used to capture the interface.Numerical experiments show that the method is at least mass and momentum conservative and is in general comparable in numerical resolution with the original GFM.展开更多
This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a ...This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.展开更多
The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating ...The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hydrodynamics characteristics of flow field under the interaction of natural cavitation and ventilated cavitation is analyzed.The results indicate that the ventilated cavitation number is under a combined effect of the natural cavitation number and gas flow rate in the multiphase cavitating flows.展开更多
Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug ...Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug flow hydrodynamic model consi-dering hydrate phase transition kinetics with heat and mass transfer behaviors.The varying gas physical properties due to pressure and temperature variations are also introduced to evaluate vertical slug flow characteristics.The proposed model is used to carry out a series of numerical simulations to examine the interactions between hydrate phase transition and vertical slug flow hydrodynamics.Furthermore,the hydrate volumetric fractions under different pressure and temperature conditions are predicted.The results reveal that hydrate formation and gas expansion cause the mixture superficial velocity,and the gas and liquid fractions,void fraction in liq-uid slug,and unit length tend to decrease.The increase in outlet pressure leads to an increased hydrate formation rate,which not only increases the hydrate volumetric fraction along the pipe but also causes the upward shift of the hydrate phase transition critical point.展开更多
Geological CO_(2) storage is a promising strategy for reducing greenhouse gas emissions;however,its underlying multiphase reactive flow mechanisms remain poorly understood.We conducted steady-state imbibition relative...Geological CO_(2) storage is a promising strategy for reducing greenhouse gas emissions;however,its underlying multiphase reactive flow mechanisms remain poorly understood.We conducted steady-state imbibition relative permeability experiments on sandstone from a proposed storage site,comple-mented by in situ X-ray imaging and ex situ analyses using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).Despite our use of a brine that was pre-equilibrated with CO_(2),there was a significant reduction in both CO_(2) relative permeability and absolute permeability during multiphase flow due to chemical reactions.This reduction was driven by decreased pore and throat sizes,diminished connectivity,and increased irregularity of pore and throat shapes,as revealed by in situ pore-scale imaging.Mineral dissolution,primarily of feldspar,albite,and calcite,along with precipitation resulting from feldspar-to-kaolinite transformation and fines migration,were identified as contributing factors through SEM-EDS analysis.This work provides a benchmark for storage in mineralogically complex sandstones,for which the impact of chemical reactions on multiphase flow properties has been measured.展开更多
In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer...In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.展开更多
Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of n...Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.展开更多
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conser...It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.展开更多
The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied...The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.展开更多
基金Supported by the Guangxi Natural Science Foundation(Grant No.2021GXNSFBA196008)the Guangxi Science and Technology Development Program(Grant No.GuikeAD22035189).
文摘Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid dynamics.In this study,an axisymmetric adaptive multiresolution smooth particle hydrodynamics(SPH)model is proposed to solve various strongly compressible multiphase flow problems.In the present model,the governing equations are discretized in cylindrical polar coordinates,and an improved volume adaptive scheme is developed to better solve the problem of excessive volume change in strongly compressible multiphase flows.On this basis,combined with the adaptive particle refinement technique,an adaptive multiresolution scheme is proposed in this study.In addition,the high-order differential operator and diffusion correction term are utilized to improve the accuracy and stability.The effectiveness of the model is verified by testing four typical strongly compressible multiphase flow problems.By comparing the results of adaptive multiresolution SPH with other numerical results or experimental data,we can conclude that the present SPH method effectively models strongly compressible multiphase flows.
基金Supported by the Key Projects of National Natural Science Foundation of China (50736006 9587003-13) the State Key Development Program for Basic Research of China (G1999-0222-08) the National Pandeng Project of China (85-06-1-2)
文摘Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.
文摘Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.
基金sponsored by the William R.T.Oakes Endowment of the Georgia Institute of Technology
文摘The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field.The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach.The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation(LES) turbulence closure.First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure.Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region.The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture.The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa.The calculated jet penetration depth closely matches measurements.It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment.Finally, water and acetone jet injection normal to air crossflow is studied at1 atm.The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (62311)supported by the National Natural Science Foundation of China(51006040)+1 种基金the Hong Kong Scholar Programthe National Science Fund for Distinguished Young Scholars of China (51125024)
文摘In this paper, a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems. Unlike previous models in the literature, the present model not only enables the study of multicomponent flows with different molecular weights, different viscosities and different Schmidt numbers, but also ensures that the distribution function of each component evolves on the same square lattice without invoking ad- ditional interpolations. Furthermore, the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations, and satisfies the indifferentiability principle. The numerical validation exercises further demonstrate that the favorable performance of the present model.
基金Project supported by the National Natural Science Foundation of China(No.11425210)the Fundamental Research Funds for the Central Universities(No.WK2090050025)
文摘The incompressible two-phase flows are simulated using combination of an etching multiblock method and a diffuse interface (DI) model, particularly in the com- plex domain that can be decomposed into multiple rectangular subdomains. The etching multiblock method allows natural communications between the connected subdomains and the efficient parallel computation. The DI model can consider two-phase flows with a large density ratio, and simulate the flows with the moving contact line (MCL) when a geometric formulation of the MCL model is included. Therefore, combination of the etch- ing method and the DI model has potential to deal with a variety of two-phase flows in industrial applications. The performance is examined through a series of numerical exper- iments. The convergence of the etching method is firstly tested by simulating single-phase flows past a square cylinder, and the method for the multiphase flow simulation is vali- dated by investing drops dripping from a pore. The numerical results are compared with either those from other researchers or experimental data. Good agreement is achieved. The method is also used to investigate the impact of a droplet on a grooved substrate and droplet generation in flow focusing devices.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB1504301)the Australian Research Council(Grant No.DE160101098)。
文摘A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen–Cahn equation(ACE).By adopting the improved form of a relaxation matrix and an equilibrium distribution function,the time derivative?t(φ)induced by recovering the diffusion term in ACE is eliminated.The conducted Chapman–Enskog analysis demonstrates that the correct conservative ACE is recovered.Four benchmark cases including Zalesak’s disk rotation,vortex droplet,droplet impact on thin film,and Rayleigh–Taylor instability are investigated to validate the proposed model.The numerical results indicate that the proposed model can accurately describe the complex interface deformation.
文摘Direct numerical simulations (DNS) have now become a well established tool to examine complex multiphase flows. Such flows typically exhibit a large range of scales and it is generally necessary to use different descriptions of the flow depending on the scale that we are examining. Here we discuss multiphase flows from a multiscale perspective. Those include both how DNS are providing insight and understanding for modeling of scales much larger than the "dominant scale" (defined where surface tension, viscous forces or inertia are important), as well as how DNS are often limited by the need to resolve processes taking place on much smaller scales. Both problems can be cast into a language introduced for general classes of multiscale problems and reveal that while the classification may be new, the issues are not.
文摘The paper presents the implementation of non-Newtonian fluid properties for compressible multiphase solver in the open source framework OpenFOAM. The transport models for Power Law, Cross Power Law, Casson, Bird-Carreau and Herschel-Bulkley fluids were included in the thermophysical model library. Appropriate non-Newtonian liquids have been chosen from literature, and pressure driven test simulations are carried out. Therefore, the solver compressibleInterFoam is used to compute air-liquid mixture flows over a backward facing step. A validation of the novel models has been performed by means of a sample-based comparison of the strain rate viscosity relation. The theoretical rheological properties of the selected liquids agree well with the results of the simulated data.
文摘In this paper,a new sharp-interface approach to simulate compressible multiphase flows is proposed.The new scheme consists of a high order WENO finite volume scheme for solving the Euler equations coupled with a high order pathconservative discontinuous Galerkin finite element scheme to evolve an indicator function that tracks the material interface.At the interface our method applies ghost cells to compute the numerical flux,as the ghost fluid method.However,unlike the original ghost fluid scheme of Fedkiw et al.[15],the state of the ghost fluid is derived from an approximate-state Riemann solver,similar to the approach proposed in[25],but based on a much simpler formulation.Our formulation leads only to one single scalar nonlinear algebraic equation that has to be solved at the interface,instead of the system used in[25].Away from the interface,we use the new general Osher-type flux recently proposed by Dumbser and Toro[13],which is a simple but complete Riemann solver,applicable to general hyperbolic conservation laws.The time integration is performed using a fully-discrete one-step scheme,based on the approaches recently proposed in[5,7].This allows us to evolve the system also with time-accurate local time stepping.Due to the sub-cell resolution and the subsequent more restrictive time-step constraint of the DG scheme,a local evolution for the indicator function is applied,which is matched with the finite volume scheme for the solution of the Euler equations that runs with a larger time step.The use of a locally optimal time step avoids the introduction of excessive numerical diffusion in the finite volume scheme.Two different fluids have been used,namely an ideal gas and a weakly compressible fluid modeled by the Tait equation.Several tests have been computed to assess the accuracy and the performance of the new high order scheme.A verification of our algorithm has been carefully carried out using exact solutions as well as a comparison with other numerical reference solutions.The material interface is resolved sharply and accurately without spurious oscillations in the pressure field.
基金MUFFINS,MUltiphase Flow-induced Fluid-flexible structure InteractioN in Subsea applications(EP/P033180/1)the PREMIERE programme grant(EP/T000414/1)SMARTRES,Smart assessment,management and optimization of urban geothermal resources(NE/X005607/1).
文摘We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous media.The proposed method rely on four pillars:(i)dimensionless numbers as input parameters for the machine learning model,(ii)simplified numerical model(two-dimensional)for the offline training,(iii)dynamic control of a nonlinear solver tuning parameter(numerical relaxation),(iv)and online learning for time real-improvement of the machine learning model.This strategy decreases the number of nonlinear iterations by dynamically modifying a single global parameter,the relaxation factor,and by adaptively learning the attributes of each numerical model on-the-run.Furthermore,this work performs a sensitivity study in the dimensionless parameters(machine learning features),assess the efficacy of various machine learning models,demonstrate a decrease in nonlinear iterations using our method in more intricate,realistic three-dimensional models,and fully couple a machine learning model into an open-source multiphase flow simulator achieving up to 85%reduction in computational time.
基金supported by NSFC 10531080,10972230,and 973 project 2005CB321703 and 2010CB731505supported by ARO grant W911NF-08-1-0520 and NSF grant DMS-0809086.
文摘A conservative modification to the ghost fluid method(GFM)is developed for compressible multiphase flows.The motivation is to eliminate or reduce the conservation error of the GFM without affecting its performance.We track the conservative variables near the material interface and use this information to modify the numerical solution for an interfacing cell when the interface has passed the cell.The modification procedure can be used on the GFM with any base schemes.In this paper we use the fifth order finite difference WENO scheme for the spatial discretization and the third order TVD Runge-Kutta method for the time discretization.The level set method is used to capture the interface.Numerical experiments show that the method is at least mass and momentum conservative and is in general comparable in numerical resolution with the original GFM.
基金funded by the National Natural Sci-ence Foundation of China(No.U2006226)the National Key Research and Development Program of China(No.2016YFC0303800)the National Natural Science Foundation of China(No.51579245)。
文摘This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.
基金supported by the National Natural Science Foundation of China(Grant No:10832007)Shanghai Leading Academic Discipline Project(Project No. B206)
文摘The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hydrodynamics characteristics of flow field under the interaction of natural cavitation and ventilated cavitation is analyzed.The results indicate that the ventilated cavitation number is under a combined effect of the natural cavitation number and gas flow rate in the multiphase cavitating flows.
基金supported by the National Natural Science Foundation of China(No.52301355)the Natu-ral Science Foundation of Qingdao Municipality(No.23-2-1-108-zyyd-jch)the China University of Petroleum(East China)Independent Innovation Research Project(Science and Engineering)-Leading Talent Cultivation Fund(No.24CX07001A).
文摘Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug flow hydrodynamic model consi-dering hydrate phase transition kinetics with heat and mass transfer behaviors.The varying gas physical properties due to pressure and temperature variations are also introduced to evaluate vertical slug flow characteristics.The proposed model is used to carry out a series of numerical simulations to examine the interactions between hydrate phase transition and vertical slug flow hydrodynamics.Furthermore,the hydrate volumetric fractions under different pressure and temperature conditions are predicted.The results reveal that hydrate formation and gas expansion cause the mixture superficial velocity,and the gas and liquid fractions,void fraction in liq-uid slug,and unit length tend to decrease.The increase in outlet pressure leads to an increased hydrate formation rate,which not only increases the hydrate volumetric fraction along the pipe but also causes the upward shift of the hydrate phase transition critical point.
文摘Geological CO_(2) storage is a promising strategy for reducing greenhouse gas emissions;however,its underlying multiphase reactive flow mechanisms remain poorly understood.We conducted steady-state imbibition relative permeability experiments on sandstone from a proposed storage site,comple-mented by in situ X-ray imaging and ex situ analyses using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).Despite our use of a brine that was pre-equilibrated with CO_(2),there was a significant reduction in both CO_(2) relative permeability and absolute permeability during multiphase flow due to chemical reactions.This reduction was driven by decreased pore and throat sizes,diminished connectivity,and increased irregularity of pore and throat shapes,as revealed by in situ pore-scale imaging.Mineral dissolution,primarily of feldspar,albite,and calcite,along with precipitation resulting from feldspar-to-kaolinite transformation and fines migration,were identified as contributing factors through SEM-EDS analysis.This work provides a benchmark for storage in mineralogically complex sandstones,for which the impact of chemical reactions on multiphase flow properties has been measured.
基金Project(07JJ4016) supported by the Natural Science Foundation of Hunan Procvince,China
文摘In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.
文摘Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.
基金supported by the China National 863 Program (Grant No.2006AA09A106)the Doctoral Program of Higher Education of China (Grant No.20060425502)+1 种基金the National Natural Science Foundation of China (Grant No.50874116)Shandong Province Natural Science Foundation(Grant No.Z2007A01)
文摘It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.
基金supported by the Industrial Infrastructure Program through The Korea Institute for Advancement of Technology(KIAT) Grant funded by the Korea government Ministry of Trade,Industry and Energy(Grant N0000502)
文摘The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.