The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharop...The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.展开更多
The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and ele...The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.展开更多
In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative ro...In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.展开更多
Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity lim...Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity limit its wide application.Herein,coaxial nano-multilayered C/SnO_(2)/TiO_(2)composites were fabricated via layerby-layer self-assembly of TiO_(2)and SnO_(2)-gel layers on the natural cellulose filter paper,followed by thermal treatment under a nitrogen atmosphere.Through engineering design of the assembly process,the optimal C/SinO_(2)/TiO_(2)composite features five alternating SnO_(2)and TiO_(2)nanolayers,with TiO_(2)as the outside shell(denoted as C/TSTST).This unique structure endows the C/TSTST with excellent structural stability and electrochemical kinetics,making it a high-performance anode for lithium-ion batteries(LIBs).The C/TSTST composite delivers a high reversible capacity of 676 mAh g^(-1)at 0.1 A g^(-1)after 200 cycles and retains a capacity of 504 mAh g^(-1)at 1.0 A g^(-1),which can be recovered to 781 mAh g^(-1)at 0.1 A g^(-1)The significantly enhanced electrochemical performance is attributed to the hierarchical hybrid structure,where the carbon core combined with coaxial TiO_(2)nanolayers serves as a structural scaffold,ameliorating volume change of SnO_(2)while creating abundant interfacial defects for enhanced lithium storage and rapid charge transport.These findings are further demonstrated by the density functional theory(DFT)calculations.This work provides an efficient strategy for designing coaxial nano-multilayered transition metal oxide-related electrode materials,offering new insights into high-performance LIBs anodes.展开更多
In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system ...In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are ca...Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are calculated using the Legendre polynomial method.Wave characteristics in the context of these two models are analyzed in detail.Results show that the phonon-phason coupling effects on the first two layers are the same at low frequencies;but,they are more significant on the first layer than those on the second layer at high frequencies.These obtained results lay the theoretical basis of guided-wave nondestructive test on multilayered quasi-crystal plates.展开更多
Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from pla...Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.展开更多
SiC nanowires reinforced C/(PyC-SiC)_(n)multilayered matrix composites(SM-CS for short)were prepared by combined with sol-gel and chemical vapor infiltration(CVI)method.Firstly,(PyC-Si OC);multilayered structure was f...SiC nanowires reinforced C/(PyC-SiC)_(n)multilayered matrix composites(SM-CS for short)were prepared by combined with sol-gel and chemical vapor infiltration(CVI)method.Firstly,(PyC-Si OC);multilayered structure was formed by cycles of impregnation and deposition.Then SiOC was transformed into SiC by heat-treatment,and(PyC-SiC)_(n)multilayered structure would be obtained.At the same time,the PyC layer which was designed as the outmost layer could decrease gas supersaturation to form in-situ tubular SiC nanowires on the surface of multilayered structure.The results of three-point bending test showed that the maximum force of SM-CS composites was increased by the number of cycles of the preparation process,which were up to enhanced by 74.38%compared with C/C composite materials.The fracture surface showed that the improvement was due to the multiscale reinforcing system of(PyC-SiC)_(n)multilayered structure and SiC nanowires.Multilayered structure can protect carbon fibers and release stress concentration by induction of cracks.And the mechanical interlocking effect of SiC nanowires could reinforce bonding force of the remaining matrix.展开更多
We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outsid...We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.展开更多
We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectr...We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.展开更多
The article entitled with OptoGPT:A foundation model for inverse design in optical multilayer thin film structures1,with doi:10.29026/oea.2024.240062,published in No.7,Vol.7,2024 of Opto-Electronic Advances,has attrac...The article entitled with OptoGPT:A foundation model for inverse design in optical multilayer thin film structures1,with doi:10.29026/oea.2024.240062,published in No.7,Vol.7,2024 of Opto-Electronic Advances,has attracted attention from many researchers.As a result,the authors received many requests on the possibility sharing their code,model,and dataset in the mentioned work.To facilitate the needs of the research community,the authors decide to make the code,model,and datasets of OptoGPT public,enabling broader utilization and further development of enhanced models.展开更多
Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI s...Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.展开更多
In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent lumin...In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent luminescent spectra from blue to red.Composite red luminescent material Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)/light conversion agent(SMED/LCA)was fabricated with light conversion agent and Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)at a certain mass ratio.SiO_(2)(Al2 O_(3) or MgF2)were coated on the surface of SMED/LCA through heterogeneous deposition method.The structural and optical characteristics of the resulting samples were launched in terms of X-ray diffraction and emission spectrum as well as afterglow brightness.The results demonstrate that the emission spectrum exhibits two emission bands,and the peaks are located at around 470 and 615 nm.SiO_(2),Al_(2)O_(3) and MgF_(2) are coated on the surface of SMED/LCA like a protective shell to maintain its stability and luminescent properties,the afterglow initial brightness is still up to 0.37 cd/m^(2) and the afterglow color purity calculated from CIE color coordinates is basically unchanged.展开更多
The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing...The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently ...To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently without other components from 1580 to 1620 ℃, and its grains are ellipsoidal or orbicular in surface but multilayer in the inside. The fracture of LaPO_4 ceramic presents transgranular along the larger grains and along-granular for the smaller grains. It is supposed that multi-layer structural LaPO_4 may contribute to machinabilities for those LaPO_4-contained ceramic duo to its low cleavage energy, which provides a easy path for cracks propagate of material removing, also leads crack deflections, branching and blunting helping to prevent macroscopic fractures from propagation beyond the local machining area.展开更多
Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for el...Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.展开更多
文摘The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.
文摘The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.
基金supported by the National Natural Science Foundation of China(Nos.52373045 and 52033005).
文摘In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.
基金financially supported by the National Natural Science Foundation of China(Nos.22302133 and 22405161)Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(No.236Z4406G)+5 种基金the Natural Science Foundation of Hebei Education Department,China(No.BJ2025100)the Natural Science Foundation of Hebei Province,China(No.B2021210001)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2024D01A157)the Key R&D Plan of Karamay(No.2024zdyf0009)Karamay Innovation Environment Construction Plan(Innovative Talents)Project(No.2024hjcxrc0029)the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20240023)
文摘Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity limit its wide application.Herein,coaxial nano-multilayered C/SnO_(2)/TiO_(2)composites were fabricated via layerby-layer self-assembly of TiO_(2)and SnO_(2)-gel layers on the natural cellulose filter paper,followed by thermal treatment under a nitrogen atmosphere.Through engineering design of the assembly process,the optimal C/SinO_(2)/TiO_(2)composite features five alternating SnO_(2)and TiO_(2)nanolayers,with TiO_(2)as the outside shell(denoted as C/TSTST).This unique structure endows the C/TSTST with excellent structural stability and electrochemical kinetics,making it a high-performance anode for lithium-ion batteries(LIBs).The C/TSTST composite delivers a high reversible capacity of 676 mAh g^(-1)at 0.1 A g^(-1)after 200 cycles and retains a capacity of 504 mAh g^(-1)at 1.0 A g^(-1),which can be recovered to 781 mAh g^(-1)at 0.1 A g^(-1)The significantly enhanced electrochemical performance is attributed to the hierarchical hybrid structure,where the carbon core combined with coaxial TiO_(2)nanolayers serves as a structural scaffold,ameliorating volume change of SnO_(2)while creating abundant interfacial defects for enhanced lithium storage and rapid charge transport.These findings are further demonstrated by the density functional theory(DFT)calculations.This work provides an efficient strategy for designing coaxial nano-multilayered transition metal oxide-related electrode materials,offering new insights into high-performance LIBs anodes.
基金the support of the National Natural Science Foundation of China(Grant Nos.51606158,11604311 and 12074151)the Guangxi Science and Technology Base and Talent Special Project(Grant No.AD21075009)+2 种基金the Sichuan Science and Technology Program(Grant No.2021JDRC0022)the Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology,People's Republic of China(Grant Nos.MECOF2022B01 and MECOF2023B04)the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202321)。
文摘In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
基金The authors gratefully acknowledge the support by the National Natural Science Foundation of China(No.U1804134 and No.51975189)the Program for Innovative Research Team of Henan Polytechnic University(No.T2017-3)the Key Scientific and Technological Project of Henan Province(Nos.192102210189 and 182102210314).
文摘Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are calculated using the Legendre polynomial method.Wave characteristics in the context of these two models are analyzed in detail.Results show that the phonon-phason coupling effects on the first two layers are the same at low frequencies;but,they are more significant on the first layer than those on the second layer at high frequencies.These obtained results lay the theoretical basis of guided-wave nondestructive test on multilayered quasi-crystal plates.
基金financial supports from the National Natural Science Foundation of China(Nos.U1502272,51901204)the Precious Metal Materials Genome Engineering in Yunnan Province,China(Nos.2019ZE001,202002AB080001)。
文摘Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.
基金supported by the National Natural Science Foundation of China(Nos.51772247 and 5172780072)the Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory(No.6142911050217)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM5098)。
文摘SiC nanowires reinforced C/(PyC-SiC)_(n)multilayered matrix composites(SM-CS for short)were prepared by combined with sol-gel and chemical vapor infiltration(CVI)method.Firstly,(PyC-Si OC);multilayered structure was formed by cycles of impregnation and deposition.Then SiOC was transformed into SiC by heat-treatment,and(PyC-SiC)_(n)multilayered structure would be obtained.At the same time,the PyC layer which was designed as the outmost layer could decrease gas supersaturation to form in-situ tubular SiC nanowires on the surface of multilayered structure.The results of three-point bending test showed that the maximum force of SM-CS composites was increased by the number of cycles of the preparation process,which were up to enhanced by 74.38%compared with C/C composite materials.The fracture surface showed that the improvement was due to the multiscale reinforcing system of(PyC-SiC)_(n)multilayered structure and SiC nanowires.Multilayered structure can protect carbon fibers and release stress concentration by induction of cracks.And the mechanical interlocking effect of SiC nanowires could reinforce bonding force of the remaining matrix.
文摘We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971122)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2011727)+1 种基金the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201103)the Funding of Graduate Innovation Center in NUAA (Grant No. kfjj20110216)
文摘We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.
文摘The article entitled with OptoGPT:A foundation model for inverse design in optical multilayer thin film structures1,with doi:10.29026/oea.2024.240062,published in No.7,Vol.7,2024 of Opto-Electronic Advances,has attracted attention from many researchers.As a result,the authors received many requests on the possibility sharing their code,model,and dataset in the mentioned work.To facilitate the needs of the research community,the authors decide to make the code,model,and datasets of OptoGPT public,enabling broader utilization and further development of enhanced models.
基金the financial grant provided by the State Key Program of National Natural Science foundation of China(Grant No.51433008)Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20160331142330969)。
文摘Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.
基金Project supported by Natural Science Foundation of Jiangsu Province(BK20171140,BK20180629)National Natural Science Foundation of China(51803076)。
文摘In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent luminescent spectra from blue to red.Composite red luminescent material Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)/light conversion agent(SMED/LCA)was fabricated with light conversion agent and Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)at a certain mass ratio.SiO_(2)(Al2 O_(3) or MgF2)were coated on the surface of SMED/LCA through heterogeneous deposition method.The structural and optical characteristics of the resulting samples were launched in terms of X-ray diffraction and emission spectrum as well as afterglow brightness.The results demonstrate that the emission spectrum exhibits two emission bands,and the peaks are located at around 470 and 615 nm.SiO_(2),Al_(2)O_(3) and MgF_(2) are coated on the surface of SMED/LCA like a protective shell to maintain its stability and luminescent properties,the afterglow initial brightness is still up to 0.37 cd/m^(2) and the afterglow color purity calculated from CIE color coordinates is basically unchanged.
基金supported by the National Natural Science Foundation of China(No.60571010)Natural Science Foundation of Hubei province.
文摘The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
文摘To provide preliminary information for design of rare earth phosphate-contained machinable ceramic, sintering and microstructure of LaPO_4 were investigated. The results show that LaPO_4 can be sintered independently without other components from 1580 to 1620 ℃, and its grains are ellipsoidal or orbicular in surface but multilayer in the inside. The fracture of LaPO_4 ceramic presents transgranular along the larger grains and along-granular for the smaller grains. It is supposed that multi-layer structural LaPO_4 may contribute to machinabilities for those LaPO_4-contained ceramic duo to its low cleavage energy, which provides a easy path for cracks propagate of material removing, also leads crack deflections, branching and blunting helping to prevent macroscopic fractures from propagation beyond the local machining area.
文摘Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.