To improve the computational speed, the ROLS-AWS algorithm was employed in the RBF based MUD receiver. The radial basis function was introduced into the multi-user detection (MUD) firstly. Then a three-layer neural ...To improve the computational speed, the ROLS-AWS algorithm was employed in the RBF based MUD receiver. The radial basis function was introduced into the multi-user detection (MUD) firstly. Then a three-layer neural network demodulation spread-spectrum signal model in the synchronous Gauss channel was given and the multi-user detection receiver was analyzed intensively. Simulations by computer illustrate that the proposed RBF based MUD receiver employing the ROKS-AWS algorithm is better than conventional detectors and common BP neural network based MUD receivers on suppressing multiple access interference and near-far resistance.展开更多
In the uplink grant-free non-orthogonal multiple access(NOMA)scenario,since the active user at the sender has a structured sparsity transmission characteristic,the compressive sensing recovery algorithm is initially a...In the uplink grant-free non-orthogonal multiple access(NOMA)scenario,since the active user at the sender has a structured sparsity transmission characteristic,the compressive sensing recovery algorithm is initially applied to the joint detection of the active user and the transmitted data.However,the existing compressed sensing recovery algorithms with unknown sparsity often require noise power or signal-to-noise ratio(SNR)as the priori conditions,which greatly reduces the algorithm adaptability in multi-user detection.Therefore,an algorithm based on cross validation aided structured sparsity adaptive orthogonal matching pursuit(CVA-SSAOMP)is proposed to realize multi-user detection in dynamic change communication scenario of channel state information(CSI).The proposed algorithm transforms the structured sparsity model into a block sparse model,and without the priori conditions above,the cross validation method in the field of statistics and machine learning is used to adaptively estimate the sparsity of active user through the residual update of cross validation.The simulation results show that,compared with the traditional orthogonal matching pursuit(OMP)algorithm,subspace pursuit(SP)algorithm and cross validation aided block sparsity adaptive subspace pursuit(CVA-BSASP)algorithm,the proposed algorithm can effectively improve the accurate estimation of the sparsity of active user and the performance of system bit error ratio(BER),and has the advantage of low-complexity.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi...Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.展开更多
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ...In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.展开更多
The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it i...The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it is necessary to conduct in-depth research and propose corresponding error detection and error elimination methods.This paper first proposes the root causes and threats of bias in AI algorithms,then summarizes the existing bias detection and error elimination methods,and proposes a bias processing framework in three-level dimensions of data,models,and conclusions,aiming to provide a framework for a comprehensive solution to errors in algorithms.At the same time,it also summarizes the problems and challenges in existing research and makes a prospect for future research trends.It is hoped that it will be helpful for us to build fairer AI.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me...Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.展开更多
The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This pa...The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm(GA)with a“double auction”method.This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework.It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders.The GA functions as an intelligent search mechanism that identifies optimal combinations of bids from users and suppliers,addressing issues arising from the intricacies of cloud systems.Analyses proved that our method surpasses previous strategies,particularly in terms of price accuracy,speed,and the capacity to manage large-scale activities,critical factors for real-time cybersecurity systems,such as IDS.Our research integrates artificial intelligence-inspired evolutionary algorithms with market-driven methods to develop intelligent resource management systems that are secure,scalable,and adaptable to evolving risks,such as process innovation.展开更多
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ...With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.展开更多
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
An improved wavelet packet domain least mean square (IWPD-LMS) based adaptive muhiuser detection algorithm is proposed. The algorithm employs the wavelet packet transform to rewhiten the input data, and chooses the ...An improved wavelet packet domain least mean square (IWPD-LMS) based adaptive muhiuser detection algorithm is proposed. The algorithm employs the wavelet packet transform to rewhiten the input data, and chooses the best wavelet packet basis according to a novel convergence contribution function rather than the conventional Shannon entropy. The theoretic analyses show that the inadequacy of the eigenvalue spread of the tap-input correlation matrix is ameliorated, thus the convergence performance is improved greatly. The simulation result of convergence performance and bit error rate(BER) performance as a function of the signal power to noise power ratio(SNR) are presented finally to prove the validity of the proposed algorithm.展开更多
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s...RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.展开更多
Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework ...Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.展开更多
A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it ha...A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it has a higher computational complexity but better performance.展开更多
The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the...The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.展开更多
Multi-user detection is one of the important technical problems for moderncommunications. In the field of quantum communication, the multi-access channel onwhich we apply the technology of quantum information processi...Multi-user detection is one of the important technical problems for moderncommunications. In the field of quantum communication, the multi-access channel onwhich we apply the technology of quantum information processing is still an openquestion. In this work, we investigate the multi-user detection problem based on thebinary coherent-state signals whose communication way is supposed to be seen as aquantum channel. A binary phase shift keying model of this multi-access channel isstudied and a novel method of quantum detection proposed according to the conclusionof the quantum measurement theory. As a result, the average interference betweendeferent users is presented and the average error probability of the quantum detection isderived theoretically. Finally, we show the maximum channel capacity of this effectivedetection for a two-access quantum channel.展开更多
Multi-user detection techniques are currently being studied as highly promising technologies for improving the performance of unsourced multiple access systems. In this paper, we propose joint multi-user detection sch...Multi-user detection techniques are currently being studied as highly promising technologies for improving the performance of unsourced multiple access systems. In this paper, we propose joint multi-user detection schemes with weighting factors for unsourced multiple access. First, we introduce bidirectional weighting factors in the extrinsic information passing process between the multi-user detector based on belief propagation (BP) and the LDPC decoder. Second, we incorporate bidirectional weighting factors in the message passing process between the MAC nodes and the user variable nodes in BP- based multi-user detector. The proposed schemes select the optimal weighting factors through simulations. The simulation results demonstrate that the proposed schemes exhibit significant performance improvements in terms of block error rate (BLER) compared to traditional schemes. .展开更多
文摘To improve the computational speed, the ROLS-AWS algorithm was employed in the RBF based MUD receiver. The radial basis function was introduced into the multi-user detection (MUD) firstly. Then a three-layer neural network demodulation spread-spectrum signal model in the synchronous Gauss channel was given and the multi-user detection receiver was analyzed intensively. Simulations by computer illustrate that the proposed RBF based MUD receiver employing the ROKS-AWS algorithm is better than conventional detectors and common BP neural network based MUD receivers on suppressing multiple access interference and near-far resistance.
基金Supported by the National Natural Science Foundation of China(No.62001001)。
文摘In the uplink grant-free non-orthogonal multiple access(NOMA)scenario,since the active user at the sender has a structured sparsity transmission characteristic,the compressive sensing recovery algorithm is initially applied to the joint detection of the active user and the transmitted data.However,the existing compressed sensing recovery algorithms with unknown sparsity often require noise power or signal-to-noise ratio(SNR)as the priori conditions,which greatly reduces the algorithm adaptability in multi-user detection.Therefore,an algorithm based on cross validation aided structured sparsity adaptive orthogonal matching pursuit(CVA-SSAOMP)is proposed to realize multi-user detection in dynamic change communication scenario of channel state information(CSI).The proposed algorithm transforms the structured sparsity model into a block sparse model,and without the priori conditions above,the cross validation method in the field of statistics and machine learning is used to adaptively estimate the sparsity of active user through the residual update of cross validation.The simulation results show that,compared with the traditional orthogonal matching pursuit(OMP)algorithm,subspace pursuit(SP)algorithm and cross validation aided block sparsity adaptive subspace pursuit(CVA-BSASP)algorithm,the proposed algorithm can effectively improve the accurate estimation of the sparsity of active user and the performance of system bit error ratio(BER),and has the advantage of low-complexity.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
文摘Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.
基金the Sichuan Science and Technology Program(No.2022YFS0557)the National Natural Science Foundation of China(No.61972271)。
文摘In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.
文摘The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it is necessary to conduct in-depth research and propose corresponding error detection and error elimination methods.This paper first proposes the root causes and threats of bias in AI algorithms,then summarizes the existing bias detection and error elimination methods,and proposes a bias processing framework in three-level dimensions of data,models,and conclusions,aiming to provide a framework for a comprehensive solution to errors in algorithms.At the same time,it also summarizes the problems and challenges in existing research and makes a prospect for future research trends.It is hoped that it will be helpful for us to build fairer AI.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group under grant number(GRP.2/663/46).
文摘Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.
文摘The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm(GA)with a“double auction”method.This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework.It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders.The GA functions as an intelligent search mechanism that identifies optimal combinations of bids from users and suppliers,addressing issues arising from the intricacies of cloud systems.Analyses proved that our method surpasses previous strategies,particularly in terms of price accuracy,speed,and the capacity to manage large-scale activities,critical factors for real-time cybersecurity systems,such as IDS.Our research integrates artificial intelligence-inspired evolutionary algorithms with market-driven methods to develop intelligent resource management systems that are secure,scalable,and adaptable to evolving risks,such as process innovation.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
基金Sponsored by the National"863"Program Projects (2007AA012293)
文摘An improved wavelet packet domain least mean square (IWPD-LMS) based adaptive muhiuser detection algorithm is proposed. The algorithm employs the wavelet packet transform to rewhiten the input data, and chooses the best wavelet packet basis according to a novel convergence contribution function rather than the conventional Shannon entropy. The theoretic analyses show that the inadequacy of the eigenvalue spread of the tap-input correlation matrix is ameliorated, thus the convergence performance is improved greatly. The simulation result of convergence performance and bit error rate(BER) performance as a function of the signal power to noise power ratio(SNR) are presented finally to prove the validity of the proposed algorithm.
基金financially supported by Key Technologies R&D Program of Shandong Province(2015GSF115018)Natural Science Foundation of Shandong Province(ZR2013FL027+1 种基金ZR2013DM 014)Youth Foundation of Shandong Academy of Science(2013QN030)
文摘RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.
文摘Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.
文摘A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it has a higher computational complexity but better performance.
文摘The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.
基金Supported by the National Natural Science Foundation of Chinaunder Grant Nos. 61501247, 61373131 and 61702277the Six Talent Peaks Project ofJiangsu Province (Grant No. 2015-XXRJ-013)+2 种基金Natural Science Foundation of JiangsuProvince (Grant No. BK20171458)the Natural Science Foundation of the HigherEducation Institutions of Jiangsu Province (China under Grant No. 16KJB520030)theNUIST Research Foundation for Talented Scholars under Grant Nos. 2015r014, PAPDand CICAEET funds.
文摘Multi-user detection is one of the important technical problems for moderncommunications. In the field of quantum communication, the multi-access channel onwhich we apply the technology of quantum information processing is still an openquestion. In this work, we investigate the multi-user detection problem based on thebinary coherent-state signals whose communication way is supposed to be seen as aquantum channel. A binary phase shift keying model of this multi-access channel isstudied and a novel method of quantum detection proposed according to the conclusionof the quantum measurement theory. As a result, the average interference betweendeferent users is presented and the average error probability of the quantum detection isderived theoretically. Finally, we show the maximum channel capacity of this effectivedetection for a two-access quantum channel.
文摘Multi-user detection techniques are currently being studied as highly promising technologies for improving the performance of unsourced multiple access systems. In this paper, we propose joint multi-user detection schemes with weighting factors for unsourced multiple access. First, we introduce bidirectional weighting factors in the extrinsic information passing process between the multi-user detector based on belief propagation (BP) and the LDPC decoder. Second, we incorporate bidirectional weighting factors in the message passing process between the MAC nodes and the user variable nodes in BP- based multi-user detector. The proposed schemes select the optimal weighting factors through simulations. The simulation results demonstrate that the proposed schemes exhibit significant performance improvements in terms of block error rate (BLER) compared to traditional schemes. .