The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior ...Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.展开更多
A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. T...A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.展开更多
This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation...This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.展开更多
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitation...Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.展开更多
Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain...Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.展开更多
Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A th...Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.展开更多
In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure ...In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure and mechanical properties of the meshing interfaces were systematically investigated.The microstructure observation showed that metallurgical bonding without pores was created in the form of direct bonding and melting zone bonding at the interface.Fractography on tensile specimens showed cleavage fracture on the steel side and ductile fracture on the aluminum side near the interfaces.The tensile shear test results indicated that the shear strength of the meshing interface 0°and 90°was increased by 11%and 14%,respectively,when being compared to that of the ordinary Al.Fe transition joints.The values of microhardness decreased as the distance from the interface increased.After three-point bending,cracks were observed at the bonding interface for some specimens due to the existence of brittle Fe.Al compounds.展开更多
Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket ...Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket and hob is build, the meshing conditions are expatiated, and the resolved expression, which can instruct design and calculation, is educed. The tests show that the meshing design method is feasible.展开更多
A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal...A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal-order interpolation functions for all variables of tile velocity components and pressure. The main advantage of the combined nlethod is that it inlproves the sohltion accuracy by coupling an error estinla- tion procedure to an adaptive meshing technique that generates small elements in regions with a large change ill sohmtion gradients, mid at the same time, larger elements in the other regions. The performance of the combined procedure is evaluated by analyzing one test case of the flow past a cylinder, for their transient and steady-state flow behaviors.展开更多
Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, me...Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.展开更多
The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E...The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.展开更多
A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engag...A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engagement, steel rolling and workpiece machining,which cause great effects on the quality of machining and performances of transmission. This methoddescribes relation between conjugate motion and elastic deformation in the process of mesh-in andmesh-out, and can be used to determine the profile of gear tooth by a certain given load sharing.展开更多
Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation...Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation of casting solidifi cation microstructure was proposed in this paper, and the structure of the full threaded tree and the mesh refi nement method was discussed. During dendritic growth in solidifi cation, the mesh for simulation is adaptively refi ned at the liquid-solid interface, and coarsened in other areas. The numerical results of a threedimension dendrite growth indicate that the phase-fi eld method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more effi cient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidifi cation time is 0.17 s in this study.展开更多
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金co-supported by the National Natural Science Foundation of China (No. 52175104)the Postdoctoral Fellowship Program of CPSF (No. GZC20233008)
文摘Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.
文摘A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.
文摘This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.
基金financially supported by the project‘Research on Key Technologies of Condition Monitoring and Intelligent Early Detection of Wind Turbine Based on Big Data’from State Grid Corporation of China(No.NYB17201600300)
文摘Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.
基金This project is supported by National Natural Science Foundation of China(No.50575089).
文摘Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.
基金supported by National Natural Science Foundation of China(Grant Nos. 11176024, 51035007)National Basic Research Program of China(973 Program, Grant No. 2011CB706805)Open Research Fund Program of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, China
文摘Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.
基金Projects(51674229,51374189)supported by the National Natural Science Foundation of ChinaProject(WK2480000002)supported byFundamental Research Funds for Central Universities,China
文摘In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure and mechanical properties of the meshing interfaces were systematically investigated.The microstructure observation showed that metallurgical bonding without pores was created in the form of direct bonding and melting zone bonding at the interface.Fractography on tensile specimens showed cleavage fracture on the steel side and ductile fracture on the aluminum side near the interfaces.The tensile shear test results indicated that the shear strength of the meshing interface 0°and 90°was increased by 11%and 14%,respectively,when being compared to that of the ordinary Al.Fe transition joints.The values of microhardness decreased as the distance from the interface increased.After three-point bending,cracks were observed at the bonding interface for some specimens due to the existence of brittle Fe.Al compounds.
基金This project is supported by National Natural Science Foundation of China (No.50275062)National Machine Industry Technique Development Foundation of China(No.99JA0002).
文摘Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket and hob is build, the meshing conditions are expatiated, and the resolved expression, which can instruct design and calculation, is educed. The tests show that the meshing design method is feasible.
文摘A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal-order interpolation functions for all variables of tile velocity components and pressure. The main advantage of the combined nlethod is that it inlproves the sohltion accuracy by coupling an error estinla- tion procedure to an adaptive meshing technique that generates small elements in regions with a large change ill sohmtion gradients, mid at the same time, larger elements in the other regions. The performance of the combined procedure is evaluated by analyzing one test case of the flow past a cylinder, for their transient and steady-state flow behaviors.
文摘Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.
文摘The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.
基金This project is supported by National Key Project of China (No. PD9521903) , National Natural Science Foundation of China (No. 50075031) and National Key Laboratory of Mechanical Transmission of China.
文摘A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engagement, steel rolling and workpiece machining,which cause great effects on the quality of machining and performances of transmission. This methoddescribes relation between conjugate motion and elastic deformation in the process of mesh-in andmesh-out, and can be used to determine the profile of gear tooth by a certain given load sharing.
基金financially supported by Program for New Century Excellent Talents in University(No.NCET-090396)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)State Major Science and Technology Special Project Foundation for High-end Numerical Machine and Basic Manufacturing Equipment(2011ZX04014-052,2012ZX04012-011)
文摘Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation of casting solidifi cation microstructure was proposed in this paper, and the structure of the full threaded tree and the mesh refi nement method was discussed. During dendritic growth in solidifi cation, the mesh for simulation is adaptively refi ned at the liquid-solid interface, and coarsened in other areas. The numerical results of a threedimension dendrite growth indicate that the phase-fi eld method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more effi cient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidifi cation time is 0.17 s in this study.