期刊文献+
共找到5,609篇文章
< 1 2 250 >
每页显示 20 50 100
An Effective Numerical Calculation Method for Multi-Time-Scale Mathematical Models in Systems Biology
1
作者 Yohei Motomura Hiroyuki Hamada Masahiro Okamoto 《Applied Mathematics》 2016年第17期2241-2268,共28页
The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, a... The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, and metabolome (multi-layered omics data). In Systems Biology, we try to elucidate various dynamical characteristics of biological functions with applying the omics data to detailed mathematical model based on the central dogma. However, such mathematical models possess multi-time-scale properties which are often accompanied by time-scale differences seen among biological layers. The differences cause time stiff problem, and have a grave influence on numerical calculation stability. In the present conventional method, the time stiff problem remained because the calculation of all layers was implemented by adaptive time step sizes of the smallest time-scale layer to ensure stability and maintain calculation accuracy. In this paper, we designed and developed an effective numerical calculation method to improve the time stiff problem. This method consisted of ahead, backward, and cumulative algorithms. Both ahead and cumulative algorithms enhanced calculation efficiency of numerical calculations via adjustments of step sizes of each layer, and reduced the number of numerical calculations required for multi-time-scale models with the time stiff problem. Backward algorithm ensured calculation accuracy in the multi-time-scale models. In case studies which were focused on three layers system with 60 times difference in time-scale order in between layers, a proposed method had almost the same calculation accuracy compared with the conventional method in spite of a reduction of the total amount of the number of numerical calculations. Accordingly, the proposed method is useful in a numerical analysis of multi-time-scale models with time stiff problem. 展开更多
关键词 Finite Difference method Stiff Equation multi-time-scale Systems Biology Mathematical Analysis
在线阅读 下载PDF
Low-carbon generation expansion planning considering uncertainty of renewable energy at multi-time scales 被引量:16
2
作者 Yuanze Mi Chunyang Liu +2 位作者 Jinye Yang Hengxu Zhang Qiuwei Wu 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期261-272,共12页
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ... With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model. 展开更多
关键词 Renewable energy multi-time scales UNCERTAINTY Low-carbon Generation planning
在线阅读 下载PDF
Bio-Inspired Optimal Dispatching of Wind Power Consumption Considering Multi-Time Scale Demand Response and High-Energy Load Participation 被引量:1
3
作者 Peng Zhao Yongxin Zhang +2 位作者 Qiaozhi Hua Haipeng Li Zheng Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期957-979,共23页
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ... Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost. 展开更多
关键词 Biological system multi-time scale wind power consumption demand response bio-inspired computermodelling particle swarm optimization
在线阅读 下载PDF
Multi-time scale analysis of precipitation variation in Guyuan, China:1957-2005 被引量:1
4
作者 Liu Delin Li Bicheng 《Ecological Economy》 2008年第4期512-518,共7页
Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation ... Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation evo lution process had obvious multi time scale variation characteristics of 15 25 years,7 12 years and 3 6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be ana lyzed if necessary;(3) the precipitation had three main periods(22 year,9 year and 4 year) and the 22 year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012. 展开更多
关键词 Precipitation variation multi-time scale Wavelet analysis Guyuan region Loess Plateau
在线阅读 下载PDF
Application of Gray Scale Method of Melanin Production in Zebrafish
5
作者 Zheng Muchuang Xu Qitian +1 位作者 Ma Manhua Lei Cuiting 《China Detergent & Cosmetics》 2025年第3期47-52,共6页
Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whiten... Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whitening efficacy.In this study,zebrafish embryos are used as biological models to evaluate the whitening efficacy of six kinds of cosmetics raw materials,such as antioxidant,preservative and essence,and the formula of facial cleanser and facial mask products,and the limitations of the zebrafish melanin production grayscale detection method in practical application are discussed.The results show that the selection of different types of components can also reduce the production of melanin and show whitening effect.It can be seen that the gray scale method of melanin production in zebrafish is suitable for the evaluation of the efficacy of raw materials.In practical application,due to the complexity of the formula,the toxic effects of different types of ingredients may interfere with the melanin generation of zebrafish,affecting the judgment and evaluation of whitening efficacy.For the detection of whitening efficacy of products,a comprehensive evaluation system should be built together with other methods to accurately evaluate the whitening efficacy. 展开更多
关键词 zebrafish model skin whitening gray scale method MELANIN
在线阅读 下载PDF
Marine organism classification method based on hierarchical multi-scale attention mechanism
6
作者 XU Haotian CHENG Yuanzhi +1 位作者 ZHAO Dong XIE Peidong 《Optoelectronics Letters》 2025年第6期354-361,共8页
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie... We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification. 展开更多
关键词 integrate information different scales hierarchical multi scale attention lightweight feature extraction focal loss efficientnetv marine organism classification oceanic biological image classification methods convolutional block attention module
原文传递
Entropy Consistency-Based Adaptive Sampling Method for Determining the Scale Effect in the Joint Roughness Coefficient
7
作者 Jibo Qin Jun Ye +1 位作者 Xiaoming Sun Shigui Du 《Journal of Earth Science》 2025年第2期644-653,共10页
The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engin... The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably. 展开更多
关键词 sampling method joint roughness coefficient(JRC) scale effect entropy consistency measure rock joint engineering geology
原文传递
Research on multi-time scale doubly-fed wind turbine test system based on FPGA+CPU heterogeneous calculation
8
作者 Qing Mu Xing Zhang +3 位作者 Xiaoxin Zhou Xiaowei Fan Yingmei Liu Dongbo Pan 《Global Energy Interconnection》 2019年第1期7-18,共12页
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m... As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system. 展开更多
关键词 Renewable energy gen erati on DOUBLY fed in duction generator ADPSS simulati on SYSTEM Wind turbine test SYSTEM multi-time scale FPGA+CPU
在线阅读 下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
9
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
在线阅读 下载PDF
A LIMITED MEMORY QUASI-NEWTON METHOD FOR LARGE SCALE PROBLEM 被引量:3
10
作者 邓卫兵 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1996年第1期71-79,共9页
We study how to use the SR1 update to realize minimization methods for problems where the storage is critical. We give an update formula which generates matrices using information from the last m iterations. The numer... We study how to use the SR1 update to realize minimization methods for problems where the storage is critical. We give an update formula which generates matrices using information from the last m iterations. The numerical tests show that the method is efficent. 展开更多
关键词 LARGE scale PROBLEM LIMITED MEMORY methods SR1 formula.
在线阅读 下载PDF
Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method 被引量:5
11
作者 Li Jianbo Liu Jun Lin Gao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期541-546,共6页
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ... Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model. 展开更多
关键词 time domain analysis dynamic interaction acceleration impulse response function scaled boundary finiteelement method viscoelastic boundary
在线阅读 下载PDF
Scale effect and methods for accuracy evaluation of attribute information loss in rasterization 被引量:3
12
作者 BAI Yan LIAO Shunbao SUN Jiulin 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期1089-1100,共12页
Rasterization is a conversion process accompanied with information loss, which includes the loss of features' shape, structure, position, attribute and so on. Two chief factors that affect estimating attribute accura... Rasterization is a conversion process accompanied with information loss, which includes the loss of features' shape, structure, position, attribute and so on. Two chief factors that affect estimating attribute accuracy loss in rasterization are grid cell size and evaluating method. That is, attribute accuracy loss in rasterization has a close relationship with grid cell size; besides, it is also influenced by evaluating methods. Therefore, it is significant to analyze these two influencing factors comprehensively. Taking land cover data of Sichuan at the scale of 1:250,000 in 2005 as a case, in view of data volume and its processing time of the study region, this study selects 16 spatial scales from 600 m to 30 km, uses rasterizing method based on the Rule of Maximum Area (RMA) in ArcGIS and two evaluating methods of attribute accuracy loss, which are Normal Analysis Method (NAM) and a new Method Based on Grid Cell (MBGC), respectively, and analyzes the scale effect of attribute (it is area here) accuracy loss at 16 different scales by these two evaluating methods comparatively. The results show that: (1) At the same scale, average area accuracy loss of the entire study region evaluated by MBGC is significantly larger than the one estimated using NAM. Moreover, this discrepancy between the two is obvious in the range of 1 km to 10 km. When the grid cell is larger than 10 km, average area accuracy losses calculated by the two evaluating methods are stable, even tended to parallel. (2) MBGC can not only estimate RMA rasterization attribute accuracy loss accurately, but can express the spatial distribution of the loss objectively. (3) The suitable scale domain for RMA rasterization of land cover data of Sichuan at the scale of 1:250,000 in 2005 is better equal to or less than 800 m, in which the data volume is favorable and the processina time is not too Iona. as well as the area accuracv loss is less than 2.5%. 展开更多
关键词 RASTERIZATION attribute accuracy loss evaluation methodS grid cell scale effect SICHUAN
原文传递
Hazard degree identification of goafs based on scale effect of structure by RS-TOPSIS method 被引量:6
13
作者 胡建华 尚俊龙 +4 位作者 周科平 陈宜楷 甯榆林 刘浪 Mohammed M.Aliyu 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期684-692,共9页
In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. ... In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification. 展开更多
关键词 GOAF RS-TOPSIS method hazard degree scale effect
在线阅读 下载PDF
Research on Analytical Method of Fatigue Characteristics of Soft Yoke Mooring System Based on Full-Scale Measurement 被引量:3
14
作者 WU Wen-hua LV Bai-cheng +2 位作者 YUE Qian-jin ZHANG Yan-tao LIN Yang 《China Ocean Engineering》 SCIE EI CSCD 2017年第2期230-237,共8页
By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine struc... By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load. 展开更多
关键词 fatigue characteristics full scale measurement finite element method SYMS
在线阅读 下载PDF
Increment-Dimensional Scaled Boundary Finite Element Method for Solving Transient Heat Conduction Problem 被引量:2
15
作者 Li Fengzhi Li Tiantian +1 位作者 Kong Wei Cai Junfeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期1073-1079,共7页
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness... An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method. 展开更多
关键词 heat conduction scaled BOUNDARY FINITE ELEMENT method(SBFEM) temperature field accuracy
在线阅读 下载PDF
Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain 被引量:2
16
作者 Zhengdi Zhang Zhangyao Chen Qinsheng Bi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第6期358-362,共5页
A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term ... A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term as a slow-varying parameter,a generalized autonomous fast subsystem can be defined,the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced.As an example,a typical periodically excited Hartley model is used to demonstrate the validness of the method,in which the exciting frequency is far less than the natural frequency.The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented.Bursting oscillations for two typical cases are considered,which reveals that,fold bifurcation may cause the the trajectory to jump between different equilibrium branches,while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle. 展开更多
关键词 TWO scales in frequency domain MODIFIED slow-fast analysis method BURSTING oscillations Bifurcation mechanism
在线阅读 下载PDF
A scaled boundary node method applied to two-dimensional crack problems 被引量:2
17
作者 陈莘莘 李庆华 刘应华 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期55-62,共8页
A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scale... A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained. 展开更多
关键词 meshless method scaled boundary node method moving Kriging interpolation stressintensity factor
原文传递
Determination of the natural frequencies of axially moving beams by the method of multiple scales 被引量:3
18
作者 杨晓东 陈立群 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期251-254,共4页
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot... The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small. 展开更多
关键词 the method of multiple scales natural frequency axially moving beam
在线阅读 下载PDF
Numerical manifold method modeling of coupled processes in fractured geological media at multiple scales 被引量:5
19
作者 Mengsu Hu Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期667-681,共15页
The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic sheari... The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media. 展开更多
关键词 Dominant fractures Discrete fractures Discontinuum asperity scale Coupled processes Numerical manifold method(NMM)
在线阅读 下载PDF
Prediction of grain scale plasticity of NiTi shape memory alloy based on crystal plasticity finite element method 被引量:5
20
作者 Li HU Shu-yong JIANG +1 位作者 Lai-xin SHI Yan-qiu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期775-784,共10页
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba... Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains. 展开更多
关键词 grain scale plasticity NiTi shape memory alloy crystal plasticity finite element method plastic deformation microstructure evolution
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部